Optimization based on Mixed Integer Nonlinear Programming methods

Claudia D'Ambrosio

CNRS & LIX, École Polytechnique

September 10th 2015

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Outline

What is MP?

What is a MINLP?

Subclasses of MINLP Dealing with nonconvexities Expression trees Convex relaxation Variable ranges

Modeling Languages

- Neos
- MINLP Libraries

Smart Grids

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三甲 のへぐ

What is Mathematical Programming?

- MP: formal language for expressing optimization problems P
 - Parameters p =problem input p also called an instance of P
 - Decision variables x: encode problem output
 - Objective function min f(p, x)
 - ► Constraints ∀i ≤ m g_i(p, x) ≤ 0 f, g: explicit mathematical expressions involving symbols p, x
- If an instance p is given (i.e. an assignment of numbers to the symbols in p is known), write f(x), g_i(x)

Claudia)'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Main optimization problem classes

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

Outline

What is MP?

What is a MINLP?

Subclasses of MINLP Dealing with nonconvexities Expression trees Convex relaxation Variable ranges Modeling Languages Neos

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

$$\begin{array}{lll} \min f(x,y) & g(x,y) & \leq & 0 \\ & x & \in & X = \{x \mid x \in \mathbb{R}^p, Dx \leq d, x^L \leq x \leq x^U\} \\ & y & \in & Y = \{y \mid y \in \mathbb{Z}^q, Ay \leq a, y^L \leq y \leq y^U\} \end{array}$$

with $f(x, y) : \mathbb{R}^{p+q} \to \mathbb{R}$ and $g(x, y) : \mathbb{R}^{p+q} \to \mathbb{R}^m$ are

* continuous

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

$$\begin{array}{lll} \min f(x,y) & g(x,y) & \leq & 0 \\ & x & \in & X = \{x \mid x \in \mathbb{R}^p, Dx \leq d, x^L \leq x \leq x^U\} \\ & y & \in & Y = \{y \mid y \in \mathbb{Z}^q, Ay \leq a, y^L \leq y \leq y^U\} \end{array}$$

with $f(x, y) : \mathbb{R}^{p+q} \to \mathbb{R}$ and $g(x, y) : \mathbb{R}^{p+q} \to \mathbb{R}^m$ are

* continuous

I

* twice differentiable

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

$$\begin{array}{lll} \min f(x,y) & g(x,y) & \leq & 0 \\ & x & \in & X = \{x \mid x \in \mathbb{R}^p, Dx \leq d, x^L \leq x \leq x^U\} \\ & y & \in & Y = \{y \mid y \in \mathbb{Z}^q, Ay \leq a, y^L \leq y \leq y^U\} \end{array}$$

with $f(x, y) : \mathbb{R}^{p+q} \to \mathbb{R}$ and $g(x, y) : \mathbb{R}^{p+q} \to \mathbb{R}^m$ are

- * continuous
- * twice differentiable

functions.

I

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

$$\begin{array}{lll} \min f(x,y) & g(x,y) & \leq & 0 \\ & x & \in & X = \{x \mid x \in \mathbb{R}^p, Dx \leq d, x^L \leq x \leq x^U\} \\ & y & \in & Y = \{y \mid y \in \mathbb{Z}^q, Ay \leq a, y^L \leq y \leq y^U\} \end{array}$$

with $f(x, y) : \mathbb{R}^{p+q} \to \mathbb{R}$ and $g(x, y) : \mathbb{R}^{p+q} \to \mathbb{R}^m$ are

- * continuous
- * twice differentiable

functions.

r

Local optima are not always global optima.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

$$\begin{array}{lll} \min f(x,y) & g(x,y) & \leq & 0 \\ & x & \in & X = \{x \mid x \in \mathbb{R}^p, Dx \leq d, x^L \leq x \leq x^U\} \\ & y & \in & Y = \{y \mid y \in \mathbb{Z}^q, Ay \leq a, y^L \leq y \leq y^U\} \end{array}$$

with $f(x, y) : \mathbb{R}^{p+q} \to \mathbb{R}$ and $g(x, y) : \mathbb{R}^{p+q} \to \mathbb{R}^{m}$.

Subclasses :

- * f and g are convex: convex MINLPs.
- * f and g are separable: separable MINLP.
- * f and g are quadratic: quadratic MINLP.
- * f and g are polynomial: polynomial MINLP.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Based on:

1. Continuous (NLP) Relaxation: relax integrality requirements

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○の≪⊙

Based on:

- 1. Continuous (NLP) Relaxation: relax integrality requirements
- 2. (Mixed Integer) Linear Relaxation: outer approximation

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

$$\begin{array}{rcl} \min f(x,y) & g(x,y) & \leq & 0 \\ & x & \in & X \\ & y & \in & \{y \mid y \in \mathbb{R}^q, Ay \leq a, y^L \leq y \leq y^U\} \end{array}$$

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\begin{array}{rcl} \min f(x,y) & \leq & 0 \\ & g(x,y) & \leq & 0 \\ & x & \in & X \\ & y & \in & \{y \mid y \in \mathbb{R}^q, Ay \leq a, y^L \leq y \leq y^U\} \end{array}$$

NP-hard to solve in general!

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

MINLP branch-and-bound

Branch-and-bound algorithm:

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexilles

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

MINLP branch-and-bound

<u>Branch-and-bound</u> algorithm: solve continuous (NLP) relaxation at each node of the search tree and branch on variables.

NLP solver used:

Local NLP solvers \rightarrow local optimum

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexilies

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexilies

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

LB = 30

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

NLP solver used:

Local NLP solvers \rightarrow local optimum No valid bound for nonconvex MINLPs.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Different starting points for root/each node.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Different starting points for root/each node.

LB = min(30,

0

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Different starting points for root/each node.

LB = min(30, 28,

0

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Different starting points for root/each node.

LB = min(30, 28, 32,

0

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexilles

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Different starting points for root/each node.

LB = min(30, 28, 32, 30,

(0

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexilles

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Different starting points for root/each node.

LB = min(30, 28, 32, 30, 23) = 23

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙
Different starting points for root/each node.

LB = min(30, 28, 32, 30, 23) = 23 $y_1 = 1$ $y_1 = 0$

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Different starting points for root/each node.

LB = min(30, 28, 32, 30, 23) = 23 $y_1 = 1$ $y_1 = 0$ (1)

LB = min(35,

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Different starting points for root/each node.

LB = min(30, 28, 32, 30, 23) = 23 $y_1 = 1$ $y_1 = 0$ (1)

LB = min(35, 24,

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Different starting points for root/each node.

LB = min(30, 28, 32, 30, 23) = 23 $y_1 = 1$ $y_1 = 0$ (1)

LB = min(35, 24, 28,

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Different starting points for root/each node.

LB = min(30, 28, 32, 30, 23) = 23 0 $y_1 = 1$ $y_1 = 0$

LB = min(35, 24, 28, 24,

What is a MINLP?

methods

Branch-and-Bound Bounds tightening

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Different starting points for root/each node.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Different starting points for root/each node.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Different starting points for root/each node.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Different starting points for root/each node.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ● ○ ○ ○ ○

Different starting points for root/each node.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Different starting points for root/each node.

Still not a valid LB!

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

where $I^{k} \subseteq \{1, 2, ..., m\}$.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\begin{split} \min \gamma \\ f(x^k, y^k) + \nabla f(x^k, y^k)^T \left(\begin{array}{c} x - x^k \\ y - y^k \end{array}\right) &\leq \gamma \quad \forall k \\ g_i(x^k, y^k) + \nabla g_i(x^k, y^k)^T \left(\begin{array}{c} x - x^k \\ y - y^k \end{array}\right) &\leq 0 \quad \forall k \; \forall i \in I^k \\ & x \quad \in & X \\ & y \quad \in & Y. \end{split}$$

where $I^k \subseteq \{1, 2, \dots, m\}$. Two "classical" choices: • $I^k = \{1, 2, \dots, m\}$ Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

$$\begin{split} \min \gamma \\ f(x^k, y^k) + \nabla f(x^k, y^k)^T \left(\begin{array}{c} x - x^k \\ y - y^k \end{array}\right) &\leq \gamma \quad \forall k \\ g_i(x^k, y^k) + \nabla g_i(x^k, y^k)^T \left(\begin{array}{c} x - x^k \\ y - y^k \end{array}\right) &\leq 0 \quad \forall k \; \forall i \in I^k \\ & x \; \in \; X \\ & y \; \in \; Y. \end{split}$$

where
$$I^k \subseteq \{1, 2, ..., m\}$$
. Two "classical" choices:
• $I^k = \{1, 2, ..., m\}$
• $I^k = \{i \mid g(x^k, y^k) > 0, 1 \le i \le m\}$

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Outer Approximation and nonconvex MINLPs

Several methods for convex MINLPs use **Outer Approximation** cuts (Duran and Grossman, 1986) which are not exact for nonconvex MINLPs. Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Outer Approximation and nonconvex MINLPs

Several methods for convex MINLPs use **Outer Approximation** cuts (Duran and Grossman, 1986) which are not exact for nonconvex MINLPs.

$$g(x,y) \leq 0 \quad o \quad g_i(x^k,y^k) +
abla g_i(x^k,y^k)^T \left(egin{array}{c} x-x^k \ y-y^k \end{array}
ight) \leq 0$$

where $\nabla g(x^k, y^k)$ is the Jacobian of g(x, y) evaluated at the point (x^k, y^k) .

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Outer Approximation and nonconvex MINLPs

Several methods for convex MINLPs use **Outer Approximation** cuts (Duran and Grossman, 1986) which are not exact for nonconvex MINLPs.

$$g(x,y) \leq 0 \quad o \quad g_i(x^k,y^k) +
abla g_i(x^k,y^k)^T \left(egin{array}{c} x-x^k \ y-y^k \end{array}
ight) \leq 0$$

where $\nabla g(x^k, y^k)$ is the Jacobian of g(x, y) evaluated at the point (x^k, y^k) .

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Outline

What is MP? What is a MINLP

Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound

Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos

MINLP Libraries

Smart Grids

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Global Optimization methods

b: local solution of objective function in whole space

Exact

- "Exact" in continuous space: ε-approximate (find solution within pre-determined ε distance from optimum in obj. fun. value)
- For some problems, finite convergence to optimum
 - $(\varepsilon = 0)$

Heuristic

 Find solution with probability 1 in infinite time

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Outline

What is MP? What is a MINLF

Subclasses of MINLP Dealing with nonconvexities Global Optimization methods

Spatial Branch-and-Bound

Expression trees Convex relaxation Variable ranges Modeling Languages Neos **MINLP** Libraries

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Falk and Soland (1969) "An algorithm for separable nonconvex programming problems".

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

・ロト・日本・日本・日本・日本・日本

Falk and Soland (1969) "An algorithm for separable nonconvex programming problems".

20 years ago: first general-purpose "exact" algorithms for nonconvex MINLP.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Falk and Soland (1969) "An algorithm for separable nonconvex programming problems".

20 years ago: first general-purpose "exact" algorithms for nonconvex MINLP.

- Tree-like search
- Explores search space exhaustively but implicitly
- Builds a sequence of decreasing upper bounds and increasing lower bounds to the global optimum
- Exponential worst-case
- Like BB for MILP, but may branch on continuous vars Done whenever one is involved in a nonconvex term

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 – のへぐ

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Convex relaxation (lower) bound \overline{f} with $|f^* - \overline{f}| > \varepsilon$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへで

Convex relaxation on C_1 : lower bounding solution \bar{x}

▲□▶▲□▶▲□▶▲□▶ □ のQ@

localSolve. from \bar{x} : new upper bounding solution x^*

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● のへで

No more subproblems left, return x^{*} and terminate

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Spatial B&B: Pruning

- 1. *P* was branched into C_1, C_2
- 2. C_1 was branched into C_3 , C_4
- 3. C_3 was pruned by optimality $(x^* \in \mathcal{G}(C_3) \text{ was found})$
- 4. *C*₂, *C*₄ were **pruned by bound** (lower bound for *C*₂ worse than *f**)
- 5. No more nodes: whole space explored, $x^* \in \mathcal{G}(P)$

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの
Spatial B&B: Pruning

- 1. *P* was branched into C_1, C_2
- 2. C_1 was branched into C_3 , C_4
- 3. C_3 was pruned by optimality $(x^* \in \mathcal{G}(C_3) \text{ was found})$
- 4. *C*₂, *C*₄ were **pruned by bound** (lower bound for *C*₂ worse than *f**)
- 5. No more nodes: whole space explored, $x^* \in \mathcal{G}(P)$
- Search generates a tree
- Suproblems are nodes
- Nodes can be pruned by optimality, bound or infeasibility (when subproblem is infeasible)
- Otherwise, they are branched

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

1. For arbitrary *C*, checking if it is feasible is **undecidable**

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- 1. For arbitrary *C*, checking if it is feasible is **undecidable**
- 2. How do we compute a lower bound of C?

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- 1. For arbitrary *C*, checking if it is feasible is **undecidable**
- 2. How do we compute a lower bound of C?
- 3. How do we compute an upper bound of C?

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Upper bounds: *x*^{*} can only decrease

 Computing the global optima for each subproblem yields candidates for updating x*

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Upper bounds: x^* can only decrease

- Computing the global optima for each subproblem yields candidates for updating x*
- As long as we only update x* when x' improves it, we don't need x' to be a *global* optimum

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Upper bounds: x^* can only decrease

- Computing the global optima for each subproblem yields candidates for updating x*
- As long as we only update x* when x' improves it, we don't need x' to be a *global* optimum
- Any "good feasible point" will do

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Upper bounds: *x*^{*} can only decrease

- Computing the global optima for each subproblem yields candidates for updating x*
- As long as we only update x* when x' improves it, we don't need x' to be a *global* optimum
- Any "good feasible point" will do
- Specifically, use feasible local optima

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spanal Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

- Let R_P be a relaxation of P such that:
 - 1. *R*_P also involves the decision variables of *P* (*and perhaps some others*)

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- Let R_P be a relaxation of P such that:
 - 1. *R*_P also involves the decision variables of *P* (*and perhaps some others*)
 - 2. for any range $I = [x^L, x^U]$,

 $R_P[I]$ is a relaxation of P[I]

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- Let R_P be a relaxation of P such that:
 - 1. *R*_P also involves the decision variables of *P* (*and perhaps some others*)
 - 2. for any range $I = [x^L, x^U]$, $R_P[I]$ is a relaxation of P[I]
 - 3. if I, I' are two ranges

 $I \supseteq I' \to \min R_P[I] \le \min R_P[I']$

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- Let R_P be a relaxation of P such that:
 - 1. *R*_P also involves the decision variables of *P* (*and perhaps some others*)
 - 2. for any range $I = [x^L, x^U]$, $R_P[I]$ is a relaxation of P[I]
 - 3. if *I*, *I*' are two ranges

 $I \supseteq I' \to \min R_P[I] \le \min R_P[I']$

4. For any subproblem *C* of *P*, finding $x \in \mathcal{G}(R_C)$ or showing $\mathcal{F}(R_C) = \emptyset$ is efficient

Specifically, $\bar{x} = \text{localSolve}(R_C) \in \mathcal{G}(R_C)$

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Processing C when it's infeasible will make sBB slower but not incorrect

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Processing C when it's infeasible will make sBB slower but not incorrect
- \blacktriangleright \Rightarrow sBB still works if we simply **never discard a potentially feasible** C

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

- Processing C when it's infeasible will make sBB slower but not incorrect
- ► ⇒ sBB still works if we simply never discard a potentially feasible C
- Use a "partial feasibility test" isEvidentlyInfeasible(P)

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- Processing C when it's infeasible will make sBB slower but not incorrect
- \blacktriangleright \Rightarrow sBB still works if we simply **never discard a potentially feasible** C
- Use a "partial feasibility test" isEvidentlyInfeasible(P)
 - If isEvidentlyInfeasible(C) is true, then C is guaranteed to be infeasible, and we can discard it

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◆ ○ ◆ ○ ◆

- Processing C when it's infeasible will make sBB slower but not incorrect
- \blacktriangleright \Rightarrow sBB still works if we simply **never discard a potentially feasible** C
- Use a "partial feasibility test" isEvidentlyInfeasible(P)
 - If isEvidentlyInfeasible(C) is true, then C is guaranteed to be infeasible, and we can discard it
 - Otherwise, we simply don't know, and we shall process it

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- Processing C when it's infeasible will make sBB slower but not incorrect
- ► ⇒ sBB still works if we simply never discard a potentially feasible C
- Use a "partial feasibility test" isEvidentlyInfeasible(P)
 - If isEvidentlyInfeasible(C) is true, then C is guaranteed to be infeasible, and we can discard it
 - Otherwise, we simply don't know, and we shall process it

Thm: If R_C is infeasible then C is infeasible

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- Processing C when it's infeasible will make sBB slower but not incorrect
- ► ⇒ sBB still works if we simply never discard a potentially feasible C
- Use a "partial feasibility test" isEvidentlyInfeasible(P)
 - If isEvidentlyInfeasible(C) is true, then C is guaranteed to be infeasible, and we can discard it
 - Otherwise, we simply don't know, and we shall process it
- Thm: If R_C is infeasible then C is infeasible
- **Proof**: $\varnothing = \mathcal{F}(R_C) \supseteq \mathcal{F}(C) = \varnothing$

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

To make an sBB work efficiently, you need further tricks

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1 x_2$$
:

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

F

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1 x_2$$
:

+

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1 x_2$$
:

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression mees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1 x_2$$
:

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Energiation these Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1 x_2$$
:

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1 x_2$$
:

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression from Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

F

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1 x_2$$
:

+

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1 x_2$$
:

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression mees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1 x_2$$
:

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Energiation these Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1 x_2$$
:

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Encode mathematical expressions in trees or DAGs

E.g.
$$x_1^2 + x_1 x_2$$
:

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression from Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- ► Identify all nonlinear terms x_i ⊗ x_j, replace them with a linearizing variable w_{ij}
- Add a *defining constraint* $w_{ij} = x_i \otimes x_j$ to the formulation
- Standard form:

 x_1^2

$$\begin{array}{cccc} \min & c^{\top}(x,w) & \leq & b \\ \text{s.t.} & A(x,w) & \leq & b \\ & w_{ij} & = & x_i \otimes_{ij} x_j \text{ for suitable } i,j \\ \text{bounds } \& & \text{integrality constraints} \end{array} \right\} \\ + x_1 x_2 \Rightarrow \left\{ \begin{array}{cccc} w_{11} + w_{12} & & \\ w_{11} = x_1^2 & & \\ w_{12} = x_1 x_2 & & \\ & & & \\ \end{array} \right. \xrightarrow{+}_{y_1 \to y_2} & \xrightarrow{+}_{y_1 \to y_2} & \xrightarrow{+}_{y_1 \to y_2} \end{array} \right\}$$

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Conner relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- Standard form: all nonlinearities in defining constraints
- Each defining constraint $w_{ij} = x_i \otimes x_j$ is replaced by two convex inequalities:
 - $w_{ij} \leq \text{overestimator}(x_i \otimes x_j)$ $w_{ii} \geq \text{underestimator}(x_i \otimes x_i)$
- Convex relaxation is not the tightest possible, but it can be constructed automatically

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relevation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Some variables may be integral

- Easier to perform symbolic algorithms
- Linearizes nonlinear terms
- Adds linearizing variables and defining constraints

CONVEX RELAXATION min $c^{\top}(x, w)$ A(x, w) = brelax def constr $w_i \forall i$ $w^L \le w \le w^U$

Each defining constraint replaced by convex under- and concave over-estimators

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relevation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- Crucial property for sBB convergence: convex relaxation tightens as variable range widths decrease
- convex/concave under/over-estimator constraints are (convex) functions of x^L, x^U
- it makes sense to tighten x^L, x^U at the sBB root node (trading off speed for efficiency) and at each other node (trading off efficiency for speed)

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Vonche engen Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids
- In sBB we need to tighten variable bounds at each node
- Example:
 - Optimization Based Bounds Tightening (OBBT)

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tentening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- In sBB we need to tighten variable bounds at each node
- Example:
 - Optimization Based Bounds Tightening (OBBT)
- OBBT: for each variable x in P compute
 - $\underline{x} = \min\{x \mid \text{conv. rel. constr.}\}$
 - $\overline{x} = \max\{x \mid \text{conv. rel. constr.}\}$

Set $\underline{x} \le x \le \overline{x}$

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tentening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

References

- Falk, Soland, "An algorithm for separable nonconvex programming problems", Manag. Sci. 1969.
- Horst, Tuy, "Global Optimization", Springer 1990.
- Ryoo, Sahinidis, "Global optimization of nonconvex NLPs and MINLPs with applications in process design", Comp. Chem. Eng. 1995.
- Adjiman, Floudas et al., "A global optimization method, αBB, for general twice-differentiable nonconvex NLPs", Comp. Chem. Eng. 1998.
- Smith, Pantelides, "A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs", Comp. Chem. Eng. 1999.
- Nowak, "Relaxation and decomposition methods for Mixed Integer Nonlinear Programming", Birkhäuser, 2005.
- Belotti, Liberti et al., "Branching and bounds tightening techniques for nonconvex MINLP", Opt. Meth. Softw., 2009.
- Vigerske, PhD Thesis: "Decomposition of Multistage Stochastic Programs and a Constraint Integer Programming Approach to Mixed-Integer Nonlinear Programming", Humboldt-University Berlin, 2013.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Example: Box-constrained polynomial optimization.

$$\begin{array}{lll} \min & f(x,y) \\ & x_i \in [l_i,u_i] & \forall i \in \{1,\ldots,p\} \\ & y_i \in \{l_i,\ldots,u_i\} & \forall i \in \{1,\ldots,q\} \end{array}$$

where *f* is an arbitrary polynomial of degree $d \in \mathbb{N}$.

Let us define n = p + q and m = the number of monomials of *f*.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

How far can we get?

Example: Box-constrained polynomial optimization.

n	т	scip	couenne	baron
10	10	0.33 (10)	0.08 (10)	1.34 (10)
10	20	1.43 (10)	0.44 (10)	0.89 (10)
10	30	22.05 (10)	0.81 (10)	3.08 (10)
10	40	182.85 (9)	4.56 (10)	26.89 (10)
10	50	774.88 (9)	16.26 (10)	54.59 (10)
10	60	447.96 (5)	22.29 (10)	53.64 (10)
10	70	679.35 (4)	11.25 (10)	126.53 (10)
10	80	1574.58 (1)	74.86 (10)	577.44 (10)
10	90	3474.68 (1)	72.41 (10)	263.55 (10)
10	100	***	51.78 (9)	567.50 (10)
15	15	0.19 (10)	0.15 (10)	0.44 (10)
15	30	112.57 (10)	1.98 (10)	6.67 (10)
15	45	318.58 (7)	10.49 (9)	125.61 (10)
15	60	879.22 (2)	117.01 (10)	556.31 (10)
15	75	***	318.52 (10)	967.85 (8)
15	90	***	301.10 (6)	1440.39 (3)
15	105	***	495.67 (6)	***
15	120	***	586.83 (6)	952.72 (1)
15	135	***	1673.22 (4)	***
15	150	***	1614.30 (2)	***

Table: Results for bounds [-10,10], mixed-integer variables.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

How far can we get?

Example: Box-constrained polynomial optimization.

n	т	scip	couenne	baron
20	20	0.51 (10)	0.33 (10)	0.86 (10)
20	40	707.09 (8)	12.50 (10)	113.98 (10)
20	60	***	383.20 (10)	1842.67 (6)
20	80	***	1141.59 (7)	***
20	100	***	1110.76 (2)	***
20	120	***	1984.69 (1)	***
20	140	***	***	***
20	160	***	1223.26 (1)	***
20	180	***	***	***
20	200	***	***	***
25	25	2.15 (10)	0.80 (10)	2.92 (10)
25	50	1233.17 (1)	51.20 (10)	606.13 (9)
25	75	***	1237.38 (6)	3378.23 (1)
25	100	***	1167.83 (1)	***
25	125	***	***	***
25	150	***	***	***
25	175	***	***	***
25	200	***	***	***
25	225	***	***	***
25	250	***	***	***

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

Table: Results for bounds [-10,10], mixed-integer variables.

 $\min(((x_0 * x_2) * (-0.47373 * y_7)) + ((0.218418 * y_7) * (x_4 * (x_0 * x_1))) +$ $((0.843784 * y_6) * (x_3 * (x_0 * x_2))) + (0.914311 * (y_0 * (y_5 * y_6))) +$ $(x_2 * (-0.620254 * (y_5 * y_8))) + ((x_0 * x_4) * (0.103064 * (y_7 * y_8))) +$ $(x_2 * (-0.300792 * (y_9 * (y_5 * y_7)))) + ((-0.788548 * y_7) * (x_1 * (x_2^2))) +$ $((x_1 * x_2) * (-0.185507 * (y_6^2))) + (x_1 * (0.428212 * (y_6^2))))$ $x_0 \in [0, 1]$ $x_1 \in [0, 1]$ $x_2 \in [0, 1]$ $x_3 \in [0, 1]$ $x_4 \in [0, 1]$ V5 binary V6 binary y7 binary V₈ binary y₉ binary

Problem size before reformulation: 10 variables (5 integer), 0 constraints.

Claudia)'Ambrosio

What is MP?
What is a MINLP? Subclasses of MINLP Dealing with nonconvexities
Global Optimization methods
Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges
Bounds tightening References
How far can we get?
MINLP Solvers

Modeling Language Neos MINLP Libraries

Example...

	14/1 11 14/000
min w ₃₄	What is MP?
$x_0 \in [0, 1]$	What is a MINLP?
$x_1 \in [0, 1]$	Subclasses of MINLP
$x_2 \in [0, 1]$	Dealing with nonconvexitie
$x_0 \in [0, 1]$	Global
x; c [0, 1]	Optimization
x₄ ∈ [0, 1]	methous
y ₅ binary	Spatial
y ₆ binary	Branch-and-Bound
y7 binary	Expression trees
v _e binary	Convex relaxation
y bipary	Bounds tightening
yg billary	
$w_{10} := (x_0 * x_2) \in [0, 1]$	References
$w_{11} := (y_7 * w_{10}) \in [0, 1]$	
$w_{12} := (x_0 * x_1) \in [0, 1]$	
$w_{13} := (x_4 * w_{12}) \in [0, 1]$	Practical Tools
$w_{14} := (y_7 * w_{13}) \in [0, 1]$	MINLP Solvers
$w_{15} := (x_3 * w_{10}) \in [0, 1]$	Modeling Languages
$W_{16} := (V_6 * W_{15}) \in [0, 1]$	MINLP Libraries
$Z_{17} := (V_{1} * V_{2})$ binary	Smart Gride
	Smart Grius
$z_{18} := (y_9 * z_{17})$ binary	
$w_{19} := (x_2 * y_5) \in [0, 1]$	

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

Example...

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

min w₃4

$$\begin{split} w_{20} &:= (y_8 * w_{19}) \in [0, 1] \\ w_{21} &:= (x_0 * x_4) \in [0, 1] \\ w_{22} &:= (y_7 * w_{21}) \in [0, 1] \\ w_{23} &:= (y_8 * w_{22}) \in [0, 1] \\ w_{24} &:= (y_7 * w_{19}) \in [0, 1] \\ w_{25} &:= (y_9 * w_{24}) \in [0, 1] \\ w_{26} &:= (x_2^2) \in [0, 1] \\ w_{26} &:= (x_2^2) \in [0, 1] \\ w_{27} &:= (x_1 * y_7) \in [0, 1] \\ w_{28} &:= (w_{26} * w_{27}) \in [0, 1] \\ w_{30} &:= (x_1 * x_2) \in [0, 1] \\ w_{31} &:= (z_{29} * w_{30}) \in [0, 1] \\ w_{31} &:= (z_{29} * w_{30}) \in [0, 1] \\ w_{33} &:= (x_1 * x_{22}) \in [0, 1] \\ w_{33} &:= (x_1 * x_{22}) \in [0, 1] \\ w_{34} &:= (-0.47373 * w_{11} + 0.218418 * w_{14} + 0.843784 * w_{16} + 0.914311 * z_{18} - 0.620254 * w_{20} + 0.103064 * w_{23} - 0.300792 * w_{25} - 0.788548 * w_{28} - 0.185507 * w_{31} + 0.428212 * w_{33}) \in [-2.36883, 2.50779] \end{split}$$

Problem size after reformulation: 35 variables (9 integer), 0 constraints. 🗇 🦻 🗧 👘 🚊 👘 🖉 🖉

Outline

Subclasses of MINLP Dealing with nonconvexities Expression trees Convex relaxation Variable ranges Practical Tools Modeling Languages Neos

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

ANTIGONE: http://helios.princeton.edu/ANTIGONE

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- ANTIGONE: http://helios.princeton.edu/ANTIGONE
- BARON: http://archimedes.cheme.cmu.edu/baron/baron.html

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Corvex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

- ANTIGONE: http://helios.princeton.edu/ANTIGONE
- BARON: http://archimedes.cheme.cmu.edu/baron/baron.html
- COUENNE: https://projects.coin-or.org/Couenne

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

- ANTIGONE: http://helios.princeton.edu/ANTIGONE
- BARON: http://archimedes.cheme.cmu.edu/baron/baron.html
- COUENNE: https://projects.coin-or.org/Couenne
- LINGO/LINDOGlobal:

http://www.gams.com/solvers/solvers.htm#LINDOGLOBAL

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools Modeling Languages Neos MINLP Libraries

Smart Grids

- ANTIGONE: http://helios.princeton.edu/ANTIGONE
- BARON: http://archimedes.cheme.cmu.edu/baron/baron.html
- COUENNE: https://projects.coin-or.org/Couenne
- LINGO/LINDOGlobal:

http://www.gams.com/solvers/solvers.htm#LINDOGLOBAL

MINOPT: http://titan.princeton.edu/MINOPT

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools Modeling Languages Neos MINLP Libraries

Smart Grids

- ANTIGONE: http://helios.princeton.edu/ANTIGONE
- BARON: http://archimedes.cheme.cmu.edu/baron/baron.html
- COUENNE: https://projects.coin-or.org/Couenne
- LINGO/LINDOGlobal:

http://www.gams.com/solvers/solvers.htm#LINDOGLOBAL

- MINOPT: http://titan.princeton.edu/MINOPT
- MINOTAUR: http://wiki.mcs.anl.gov/minotaur/index.php/Main_Page

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools Modeling Languages Neos MINLP Libraries

Smart Grids

- ANTIGONE: http://helios.princeton.edu/ANTIGONE
- BARON: http://archimedes.cheme.cmu.edu/baron/baron.html
- COUENNE: https://projects.coin-or.org/Couenne
- LINGO/LINDOGlobal:

http://www.gams.com/solvers/solvers.htm#LINDOGLOBAL

- MINOPT: http://titan.princeton.edu/MINOPT
- MINOTAUR: http://wiki.mcs.anl.gov/minotaur/index.php/Main_Page
- SCIP: http://scip.zib.de/

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools Modeling Languages Neos MINLP Libraries

Smart Grids

- ANTIGONE: http://helios.princeton.edu/ANTIGONE
- BARON: http://archimedes.cheme.cmu.edu/baron/baron.html
- COUENNE: https://projects.coin-or.org/Couenne
- LINGO/LINDOGlobal:

http://www.gams.com/solvers/solvers.htm#LINDOGLOBAL

- MINOPT: http://titan.princeton.edu/MINOPT
- MINOTAUR: http://wiki.mcs.anl.gov/minotaur/index.php/Main_Page
- SCIP: http://scip.zib.de/

Need to evaluate function, its first and its second derivative at (x^*, y^*) .

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools Modeling Languages Neos MINLP Libraries

- ANTIGONE: http://helios.princeton.edu/ANTIGONE
- BARON: http://archimedes.cheme.cmu.edu/baron/baron.html
- COUENNE: https://projects.coin-or.org/Couenne
- LINGO/LINDOGlobal:

http://www.gams.com/solvers/solvers.htm#LINDOGLOBAL

- MINOPT: http://titan.princeton.edu/MINOPT
- MINOTAUR: http://wiki.mcs.anl.gov/minotaur/index.php/Main_Page
- SCIP: http://scip.zib.de/

Need to evaluate function, its first and its second derivative at (x^*, y^*) . Possible source of errors!

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools Modeling Languages Neos MINLP Libraries

- ANTIGONE: http://helios.princeton.edu/ANTIGONE
- BARON: http://archimedes.cheme.cmu.edu/baron/baron.html
- COUENNE: https://projects.coin-or.org/Couenne
- LINGO/LINDOGlobal:

http://www.gams.com/solvers/solvers.htm#LINDOGLOBAL

- MINOPT: http://titan.princeton.edu/MINOPT
- MINOTAUR: http://wiki.mcs.anl.gov/minotaur/index.php/Main_Page
- SCIP: http://scip.zib.de/

Need to evaluate function, its first and its second derivative at (x^*, y^*) . Possible source of errors! Solution? Modeling Languages!

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools Modeling Languages Neos MINLP Libraries

Modeling languages, e.g., AMPL and GAMS.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers

Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Modeling languages, e.g., AMPL and GAMS. Example:

```
param pi := 3.142;
param N;
set VARS ordered := {1..N};
param Umax default 100;
param U {j in VARS};
param a {j in VARS};
param b {j in VARS};
param c {j in VARS};
param d {j in VARS};
param w{VARS};
```

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers

Neos MINLP Libraries

Smart Grids

Modeling languages, e.g., AMPL and GAMS. Example:

```
param pi := 3.142;
param N;
set VARS ordered := {1..N};
param Umax default 100;
param U {j in VARS};
param a {j in VARS};
param b {j in VARS};
param c {j in VARS};
param d {j in VARS};
param w{VARS};
param C;
var V {j in VARS} >= 0, <= U[j], integer;</pre>
```

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers

Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Modeling languages, e.g., AMPL and GAMS. Example:

```
param pi := 3.142;
param N;
set VARS ordered := {1..N};
param Umax default 100;
param U {j in VARS};
param a {j in VARS};
param b {j in VARS};
param c {j in VARS};
param d {j in VARS};
param w{VARS};
param C;
var ¥ {j in VARS} >= 0, <= U[j], integer;</pre>
```

maximize Total_Profit: sum {j in VARS} c[j]/(1+b[j]*exp(-a[j]*(y[j]+d[j])));

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers

Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Modeling languages, e.g., AMPL and GAMS. Example:

```
param pi := 3.142;
param N;
set VARS ordered := {1..N};
param Umax default 100;
param U {j in VARS};
param a {j in VARS};
param b {j in VARS};
param c {j in VARS};
param d {j in VARS};
param w{VARS};
param C;
var V {j in VARS} >= 0, <= U[j], integer;</pre>
```

maximize Total_Profit: sum {j in VARS} c[j]/(1+b[j]*exp(-a[j]*(y[j]+d[j]))); subject to KP_constraint: sum{j in VARS} w[j]*y[j] <= C;</pre>

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers

Neos MINLP Libraries

Neos

NEOS: http://www.neos-server.org/neos/.

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages

MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

NEOS: http://www.neos-server.org/neos/.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages

MINLP Libraries

CMU/IBM: 23 different kind of MINLP problems

http://www.minlp.org

Claudia D'Ambrosic

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos

Smart Grids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

CMU/IBM: 23 different kind of MINLP problems

http://www.minlp.org

MacMINLP: 51 instances

http://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Corvex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos

Smart Grids

CMU/IBM: 23 different kind of MINLP problems

http://www.minlp.org

MacMINLP: 51 instances

http://wiki.mcs.anl.gov/leyffer/index.php/MacMINLP

MINLPlib: 270 instances

http://www.gamsworld.org/minlp/minlplib.htm

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos

Smart Grids

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

 Binary variables: on/off status of generators, batteries, etc.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- Binary variables: on/off status of generators, batteries, etc.
- Continuous variables: produced/consumer power, etc.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- Binary variables: on/off status of generators, batteries, etc.
- Continuous variables: produced/consumer power, etc.
- Linear and nonlinear constraints: relation between status variables and produced power variables, amount of produced/consumed power, etc.

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

- Binary variables: on/off status of generators, batteries, etc.
- Continuous variables: produced/consumer power, etc.
- Linear and nonlinear constraints: relation between status variables and produced power variables, amount of produced/consumed power, etc.

S. Toubaline, P.-L. Poirion, C. D'Ambrosio, L. Liberti. Observing the state of a smart grid using bilevel programming. **COCOA 2015** (accepted). What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Thank you!

Claudia D'Ambrosio

What is MP?

What is a MINLP? Subclasses of MINLP Dealing with nonconvexities

Global Optimization methods

Spatial Branch-and-Bound Expression trees Convex relaxation Variable ranges Bounds tightening

References

How far can we get?

Practical Tools MINLP Solvers Modeling Languages Neos MINLP Libraries

Smart Grids

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ