Distance of observations

Zdeněk Fabián Ústav informatiky AVČR Praha

ENBIS 2015

4 ロ > K 何 > K ヨ > K ヨ > ニョー クダウ

full title:

Statistical distance of observations based on the assumed model

Zdeněk Fabián Ústav informatiky AVČR Praha [Distance of observations](#page-0-0) **K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ 『唐** OQ Why statistical distance in energy considerations ?

It can be of interest by dividing the data into groups of 'similar' events. We show that the distances depend on the model and are often non-linear

(ロ) (@) (D) (D) (

 OQ

This lecture is food for thought, based on rather non-traditional approach. Apart from preliminary published results, the whole account can be found in Z. Fabián: Score function of distribution and revival of the moment method, accepted 2013 in Communication in Statistics, but yet not appeared

K ロ ト K 何 ト K ヨ ト K ヨ ト ・

 QQQ

The result

 $X \subseteq \mathbb{R}$ denotes an open interval. Let a continuous random variable *X* has support (sample space, the space on which is defined) X , distribution function F and density $f(x) = dF(x)/dx$. A 'natural' statistical distance between two observations $x_1, x_2 \in \mathcal{X}$ from *F* is

$$
d_F(x_1, x_2) = \omega |S_F(x_2) - S_F(x_1)|
$$

where $S_{\mathcal{F}}(x)$ is the \textbf{score} function of distribution of $\mathcal F$ and ω^2 the **score variance** of *F*.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ 『唐

 OQ

Score function

Let 'statistical structure' has a 'center' ξ

 $\psi(x)$... score function is a function describing the relative influence of observed $x \in \mathcal{X}$ to a construction of ξ

The estimator of ξ is based on the requirement of zero average of oriented distances of observed values to the 'center', measured by their relative influence, that is

$$
\sum_{i=1}^n \psi(x_i - \xi) = 0
$$

◆ロト→ ◆ 同ト→ ◆ ヨト→ ヨト

 OQ

The distance of $x_1, x_2 \in \mathcal{X}$ is thus $\hat{d}(x_1, x_2) \sim |\psi(x_2) - \psi(x_1)|$

Score functions of classical statistics

Let *F* be the parent of parametric family $F_{\theta}(x), \theta \in \Theta \subseteq \mathbb{R}^m$. Function $u_F = (u_1, ..., u_m)$ where

$$
u_j(x; \theta) = \frac{\partial}{\partial \theta_j} \log f(x; \theta)
$$

is the likelihood score function (Fisher score) for θ*^j*

The well-known example: normal distribution

$$
F_{\theta} = \mathcal{N}(\mu, 1): \qquad \mathbf{u}_F(\mathbf{x}) = \mathbf{x} - \mu
$$

KID KARD KED KED E 1990

Bad news: A vector-valued function cannot be reasonably used for a definition of a distance

Score functions of robust statistics

Bounded $\psi(x)$

The well-known example: Huber's score function for contaminated normal distribution

$$
\psi(x) = \begin{cases}\n-b & \text{if } x - \xi < -b \\
x - \xi & \text{if } |x - \xi| < b \\
b & \text{if } x - \xi > b\n\end{cases}
$$

Bad news: The assumed model F_{θ} need not be a location model. A choice of a bounded ψ usually means to resign an assumed model

≮ロ ▶ ⊀ 御 ▶ ⊀ 君 ▶ ⊀ 君 ▶ ...

 OQ

Statistical distance: Normal distribution *N*(0, σ) $u_N(x) = x$; $\omega = \sigma, d_F(x, 0) = \sigma |S_F(x) - 0| = \sigma |x/\sigma^2| = |x|/\sigma$

 $2QQ$

Data observations $x_1, ..., x_n$

Zdeněk Fabián Ústav informatiky AVČR Praha
[Distance of observations](#page-0-0)

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ \equiv 299 A parametric model: exponential $f(x) = \frac{1}{\tau}e^{-x/\tau}, \tau = 3$

The Fisher score function for τ

 \equiv

(ロ) (個) (目) (毛)

 2990

Zdeněk Fabián Ústav informatiky AVČR Praha
[Distance of observations](#page-0-0)

Model gen. Pareto Distribution *F* is more probably the Pareto one $f(x) = \frac{1}{B(p,q)}$ *x p*−1 $(1+x)^{p+q}$

È

 $2QQ$

Score functions of distribution

Zdeněk Fabián Ústav informatiky AVČR Praha
[Distance of observations](#page-0-0)

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ ... \equiv 2990

Central point of the distribution

The zero of the sfd, the solution x^* of the equation $S_F(x) = 0$ or, in a parametric case, the solution $x^* = x^*(\theta)$ of equation

$$
S_F(x;\theta)=0
$$

expresses the typical value of the distribution (the central point in the geometry introduced in $\mathcal X$ by S_F), the score mean. It exists even in cases of heavy-tailed distributions with non-existing mean value

≮ロ ▶ ⊀ 伊 ≯ ⊀ 唐 ≯ ⊣ 唐 ≯ │ 唐

 2990

Distances from the central point

4 ロ > 3 伊 > 3 ミ > 3 ミ > 1 \equiv $2QQ$

Score function of distribution (SFD)

My research was stimulated by lectures of P. Kovanic, that showed me, involuntarily, that there must be some scalar-valued score function yet not discovered in classical statistics

K ロ ト K 伺 ト K ヨ ト K ヨ ト ・

 OQ

SFD, step I: Types of continuous distributions

There are three types distributions:

1) with $\mathcal{X} = \mathbb{R}$ and a 'simple' $f(x)$

2) with arbitrary $\mathcal X$ and density which can be decomposed into

 $f(x) = g(\eta(x))\eta'(x),$

where q is some bell-like function with support $\mathbb R$ and $\eta: \mathcal{X} \to \mathbb{R}$ a differentiable strictly increasing function. They can be considered as transformed distributions with Jacobian $\psi'(x)$

3) with $\mathcal{X} \neq \mathbb{R}$ and a 'simple' $f(x)$

KID KARD KED KED E 1990

Type 2: Examples of transformed distributions ■ The gen. Pareto with $\mathcal{X} = (0, \infty)$ has

$$
f(x) = \frac{1}{B(p,q)} \frac{x^{p-1}}{(1+x)^{p+q}} = \frac{1}{B(p,q)} \frac{x^p}{(1+x)^{p+q}} \frac{1}{x}
$$

$$
\eta(x) = \log x
$$

4 ロ > K 何 > K ヨ > K ヨ > ニョー クダウ

Type 2: Examples of transformed distributions ■ The gen. Pareto with $\mathcal{X} = (0, \infty)$ has

$$
f(x) = \frac{1}{B(p,q)} \frac{x^{p-1}}{(1+x)^{p+q}} = \frac{1}{B(p,q)} \frac{x^p}{(1+x)^{p+q}} \frac{1}{x}
$$

$$
\eta(x) = \log x
$$

■ The Burr V distribution with $\mathcal{X} = (-\pi/2, \pi/2)$ has

$$
f(x)=\frac{e^{-\tan x}}{(1+e^{-\tan x})^2}\frac{1}{\cos^2 x}
$$

 $\eta(x) = \tan x$

KOD KOD KED KED E 1990

Type 2: Examples of transformed distributions ■ The gen. Pareto with $\mathcal{X} = (0, \infty)$ has

$$
f(x) = \frac{1}{B(p,q)} \frac{x^{p-1}}{(1+x)^{p+q}} = \frac{1}{B(p,q)} \frac{x^p}{(1+x)^{p+q}} \frac{1}{x}
$$

$$
\eta(x) = \log x
$$

■ The Burr V distribution with $\mathcal{X} = (-\pi/2, \pi/2)$ has

$$
f(x) = \frac{e^{-\tan x}}{(1 + e^{-\tan x})^2} \frac{1}{\cos^2 x}
$$

 $\eta(x) = \tan x$

■ The log-gamma distribution with $\mathcal{X} = (1, \infty)$ has

$$
f(x) = \frac{c^{\alpha}}{\Gamma(\alpha)} (\log x)^{\alpha - 1} \frac{1}{x^{c+1}} = \frac{c^{\alpha}}{\Gamma(\alpha)} (\log x)^{\alpha} \frac{1}{x^{c}} \frac{1}{x \log x}
$$

(ロ) (個) (目) (注)

 QQQ

Zdeněk Fabián Ústav informatiky AVČR Praha [Distance of observations](#page-0-0)

 $\mathbf{r}(x) = \log \log x$

Type 1: Prototypes

Distributions with support $\mathbb R$ and densities in the form

 $f(x) = g(\eta(x))\eta'(x),$

where $\eta(x) = x, \eta'(x) = 1.$ The score function is known to be $S_F(x) = -g'(x)/g(x)$. Example: standard logistic distribution with density $f(x) = e^{-x}/(1+e^{-x})^2$ and

$$
S_F(x) = (e^x - 1)/(e^x + 1).
$$

However, a distribution with support $\mathbb R$ and density

$$
f(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{1+x^2}} e^{-\frac{1}{2}(\sinh^{-1}x)^2}
$$

is the standard normal prototype transformed by $\eta : \mathbb{R} \to \mathbb{R}$ in the form $\eta(x) = \sinh^{-1} x$. KO KAR KEKKEK E VAG

Type 3: Problem

The density $f(x) = e^{-x}$ of the exponential distribution with $\mathcal{X} = (0, \infty)$ has no explicitly expressed Jacobian term. Undoubtedly, $\eta(x) = \log x$ and $f(x) = xe^{-x} \frac{1}{x}$

The truncated exponential distribution with $\mathcal{X} = (0, 1)$ and density $f(x) = be^{-\lambda x}$ and an arbitrary function with finite X integrable to 1. If we write formally

$$
f(x) = \eta'(x)f(x)\frac{1}{\eta'(x)}
$$

4 ロ > 4 団 > 4 ミ > 4 ミ > ニ ミ - 9 Q Q

to obtain a density in a transformed form, is there a principle according to which can be chosen a 'favorable' $\eta : \mathcal{X} \to \mathbb{R}$?

Type 3: Our solution

Let us call mappings $\mathcal{X} \to \mathbb{R}$ given by

$$
\eta(x) = \begin{cases} \log(x - a) & \text{if } x = (a, \infty) \\ \log \frac{x}{1 - x} & \text{if } x = (0, 1) \end{cases}
$$

with an obvious generalization for a general support (*a*, *b*) the Johnson's mappings. The reason for assigning the corresponding Johnson mapping to a distribution with density without an explicitly expressed Jacobian term is the principle of parsimony: They are the simplest mappings, generating in the sample space the simplest distance. (Moreover, most of transformed distributions has Johnson's η)

SFD, step II: Definition

The density of all distributions with arbitrary support can be written in a transformed form

 $f(x) = g(\eta(x))\eta'(x)$

The **score function of distribution** of *F* (Fabian, 2007) is ´

$$
S_F(x) = -k \frac{1}{f(x)} \frac{d}{dx} [g(\eta(x))]
$$
 (1)

 QQ

where *k* is a constant specified later

To obtain the score function of distribution, it is to differentiate the density without the Jacobian term. The explanation is that after decomposition of $f(x)$ into transformed form [\(1\)](#page-24-1), the term $\eta'(x)$ does not contain any statistical infor[ma](#page-23-0)t[io](#page-25-0)[n](#page-23-0)

The basic property of SFDs

Recall that x^{*}, the score mean, is the solution of equation $S_F(x, \theta) = 0.$

If F_{θ} , $\theta = (\theta_1, \theta_2, ...)$ has some $\theta_j = x^*$, then $S_F(x; \theta)$ with $k = \eta'(\mathbf{x}^*)$ equals to the Fisher score for this parameter. **The score function of distribution is thus the (generalized) Fisher score for** *x* ∗

An example of distribution without a parameter equal to the score mean is the gen. Pareto or the gamma distribution with $\mathcal{X} = (0, \infty),$

$$
f(x) = \frac{\gamma^{\alpha}}{x \Gamma(\alpha)} x^{\alpha} e^{-\gamma x}
$$

KID KARD KED KED E 1990

with
$$
S_F(x) = k(\gamma x - \alpha)
$$
 and $x^* = \alpha/\gamma$

Some other properties

Score moments $ES^k_F(\theta)$ are finite, θ can be estimated from

$$
\frac{1}{n}\sum_{i=1}^{n}S_{F}^{k}(x_{i};\theta) = ES_{F}^{k}(\theta), \qquad k = 1,...,m
$$

KID KARD KED KED E 1990

S^F of heavy-tailed distributions are bounded

Some other properties

Score moments $ES^k_F(\theta)$ are finite, θ can be estimated from

$$
\frac{1}{n}\sum_{i=1}^{n}S_{F}^{k}(x_{i};\theta) = ES_{F}^{k}(\theta), \qquad k = 1,...,m
$$

S^F of heavy-tailed distributions are bounded

 $ES_F^2(\theta)$ is the Fisher information for x^* . The characteristic of variability of *F* is the **score variance**

$$
\omega^2(\theta)=\frac{1}{ES^2_F(\theta)}
$$

KID KARD KED KED E 1990

Example

Consider the heavy-tailed loglogistic distribution with $\mathcal{X} = (0, \infty)$ and

$$
f(x) = \frac{c}{\tau} \frac{(x/\tau)^{c-1}}{[(x/\tau)^c + 1]^2} = c \frac{(x/\tau)^c}{[(x/\tau)^c + 1]^2} \frac{1}{x}
$$

with score mean $x^* = \tau$ and $\omega = t/c$. The SFD is

$$
S_F(x) = -\frac{1}{\tau} \frac{d}{dx} [xf(x)] = \frac{c}{\tau} \frac{(x/\tau)^c - 1}{(x/\tau)^c + 1}
$$
 (2)

 QQ

Multiplying [\(2\)](#page-28-1) by $(x/\tau)^{-c/2}$ and by setting $c = 4/s$, one obtains

$$
S_F(x) \sim \frac{(x/\tau)^{2/s}-(x/\tau)^{-2/s}}{(x/\tau)^{2/s}+(x/\tau)^{-2/s}}
$$

which is Kovanic's score function called es[tim](#page-27-0)[at](#page-29-0)[i](#page-27-0)[ng](#page-28-0) [i](#page-29-0)[rre](#page-0-0)[le](#page-33-0)[va](#page-0-0)[nc](#page-33-0)[e](#page-0-0)

Zdeněk Fabián Ústav informatiky AVČR Praha
[Distance of observations](#page-0-0)

(ロ) (個) (目) (目) (目) 目 のQC

(ロ) (個) (目) (目) (目) 目 のQC

Zdeněk Fabián Ústav informatiky AVČR Praha
[Distance of observations](#page-0-0)

Zdeněk Fabián Ústav informatiky AVČR Praha
[Distance of observations](#page-0-0)

KO K K @ K K E K K E K Y A Q Q Q

A relevant distance in the sample space

I. A 'small' data sample $(x_1, ..., x_n) \sim F_\theta$ with unknown θ

estimate $\hat{\theta}$ of θ $\hat{\mathsf{x}}^* = \mathsf{x}^*(\hat{\theta}), \hat{\omega} = \omega(\hat{\theta}),$

$$
d(x,x^*) = \hat{\omega} |S_F(x,\hat{\theta})|
$$

II. A large data sample

estimate $\hat{f}(x)$ of $f(x)$ (histogram, kernel estimate), using a numerical derivative of $\hat{f}(x)$ and computation of $\hat{S}_F(x)$ using the Johnson's $\eta(x)$ for the given support

$$
d(x,x^*)\sim |\hat{S}_F(x_2)|
$$

KID KARD KED KED E 1990

Thank you for attention

Thank you for attention

4 ロ > K 何 > K ヨ > K ヨ > ニョー クダウ