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full title:

Statistical distance of observations based on the
assumed model
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Why statistical distance in energy considerations ?

It can be of interest by dividing the data into groups of ’similar’
events. We show that the distances depend on the model and
are often non-linear
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This lecture is food for thought, based on rather non-traditional
approach. Apart from preliminary published results, the whole
account can be found in Z.Fabián: Score function of distribution
and revival of the moment method, accepted 2013 in
Communication in Statistics, but yet not appeared
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The result

X ⊆ R denotes an open interval. Let a continuous random
variable X has support (sample space, the space on which is
defined) X , distribution function F and density
f (x) = dF (x)/dx . A ’natural’ statistical distance between two
observations x1, x2 ∈ X from F is

dF (x1, x2) = ω|SF (x2)− SF (x1)|

where SF (x) is the score function of distribution of F and ω2

the score variance of F .
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Score function

Let ’statistical structure’ has a ’center’ ξ

ψ(x) ... score function is a function describing the relative
influence of observed x ∈ X to a construction of ξ

The estimator of ξ is based on the requirement of zero average
of oriented distances of observed values to the ’center’,
measured by their relative influence, that is

n∑
i=1

ψ(xi − ξ) = 0

The distance of x1, x2 ∈ X is thus d̂(x1, x2) ∼ |ψ(x2)− ψ(x1)|
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Score functions of classical statistics

Let F be the parent of parametric family Fθ(x), θ ∈ Θ ⊆ Rm.
Function uF = (u1, ...,um) where

uj(x ; θ) =
∂

∂θj
log f (x ; θ)

is the likelihood score function (Fisher score) for θj

The well-known example: normal distribution

Fθ = N (µ,1) : uF (x) = x − µ

Bad news: A vector-valued function cannot be reasonably
used for a definition of a distance
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Score functions of robust statistics

Bounded ψ(x)

The well-known example: Huber’s score function for
contaminated normal distribution

ψ(x) =


−b if x − ξ < −b

x − ξ if |x − ξ| < b
b if x − ξ > b

Bad news: The assumed model Fθ need not be a location
model. A choice of a bounded ψ usually means to resign an
assumed model
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Statistical distance: Normal distribution N(0, σ)
uN(x) = x ;ω = σ, dF (x ,0) = σ|SF (x)− 0| = σ|x/σ2| = |x |/σ
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Data
observations x1, ..., xn
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A parametric model: exponential
f (x) = 1

τ e−x/τ , τ = 3
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The Fisher score function for τ
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Model gen. Pareto
Distribution F is more probably the Pareto one
f (x) = 1

B(p,q)
xp−1

(1+x)p+q
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Score functions of distribution
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Central point of the distribution

The zero of the sfd, the solution x∗ of the equation SF (x) = 0
or, in a parametric case, the solution x∗ = x∗(θ) of equation

SF (x ; θ) = 0

expresses the typical value of the distribution (the central point
in the geometry introduced in X by SF ), the score mean. It
exists even in cases of heavy-tailed distributions with
non-existing mean value
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Distance of observations



Distances from the central point
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Score function of distribution (SFD)

My research was stimulated by lectures of P. Kovanic, that
showed me, involuntarily, that there must be some
scalar-valued score function yet not discovered in classical
statistics
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SFD, step I: Types of continuous distributions

There are three types distributions:

1) with X = R and a ’simple’ f (x)

2) with arbitrary X and density which can be decomposed into

f (x) = g(η(x))η′(x),

where g is some bell-like function with support R and
η : X → R a differentiable strictly increasing function. They can
be considered as transformed distributions with Jacobian ψ′(x)

3) with X 6= R and a ’simple’ f (x)
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Type 2: Examples of transformed distributions
The gen. Pareto with X = (0,∞) has

f (x) =
1

B(p,q)

xp−1

(1 + x)p+q =
1

B(p,q)

xp

(1 + x)p+q
1
x

η(x) = log x

The Burr V distribution with X = (−π/2, π/2) has

f (x) =
e− tan x

(1 + e− tan x )2
1

cos2 x

η(x) = tan x

The log-gamma distribution with X = (1,∞) has

f (x) =
cα

Γ(α)
(log x)α−1 1

xc+1 =
cα

Γ(α)
(log x)α

1
xc

1
x log x

η(x) = log log x
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Distance of observations



Type 2: Examples of transformed distributions
The gen. Pareto with X = (0,∞) has

f (x) =
1

B(p,q)

xp−1

(1 + x)p+q =
1

B(p,q)

xp

(1 + x)p+q
1
x

η(x) = log x

The Burr V distribution with X = (−π/2, π/2) has

f (x) =
e− tan x

(1 + e− tan x )2
1

cos2 x

η(x) = tan x

The log-gamma distribution with X = (1,∞) has

f (x) =
cα

Γ(α)
(log x)α−1 1

xc+1 =
cα

Γ(α)
(log x)α

1
xc

1
x log x

η(x) = log log x
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Type 1: Prototypes
Distributions with support R and densities in the form

f (x) = g(η(x))η′(x),

where η(x) = x , η′(x) = 1. The score function is known to be
SF (x) = −g′(x)/g(x). Example: standard logistic distribution
with density f (x) = e−x/(1 + e−x )2 and

SF (x) = (ex − 1)/(ex + 1).

However, a distribution with support R and density

f (x) =
1√
2π

1√
1 + x2

e−
1
2 (sinh−1 x)2

is the standard normal prototype transformed by η : R→ R in
the form η(x) = sinh−1 x .
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Type 3: Problem

The density f (x) = e−x of the exponential distribution with
X = (0,∞) has no explicitly expressed Jacobian term.
Undoubtedly, η(x) = log x and f (x) = xe−x 1

x

The truncated exponential distribution with X = (0,1) and
density f (x) = be−λx and an arbitrary function with finite X
integrable to 1. If we write formally

f (x) = η′(x)f (x)
1

η′(x)

to obtain a density in a transformed form, is there a principle
according to which can be chosen a ’favorable’ η : X → R ?
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Distance of observations



Type 3: Our solution

Let us call mappings X → R given by

η(x) =

{
log(x − a) if X = (a,∞)
log x

1−x) if X = (0,1)

with an obvious generalization for a general support (a,b) the
Johnson’s mappings. The reason for assigning the
corresponding Johnson mapping to a distribution with density
without an explicitly expressed Jacobian term is the principle of
parsimony: They are the simplest mappings, generating in the
sample space the simplest distance. (Moreover, most of
transformed distributions has Johnson’s η)
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SFD, step II: Definition
The density of all distributions with arbitrary support can be
written in a transformed form

f (x) = g(η(x))η′(x)

The score function of distribution of F (Fabián, 2007) is

SF (x) = −k
1

f (x)

d
dx

[g(η(x))] (1)

where k is a constant specified later

To obtain the score function of distribution, it is to differentiate
the density without the Jacobian term. The explanation is that
after decomposition of f (x) into transformed form (1), the term
η′(x) does not contain any statistical information
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The basic property of SFDs
Recall that x∗, the score mean, is the solution of equation
SF (x , θ) = 0.

If Fθ, θ = (θ1, θ2, ...) has some θj = x∗, then SF (x ; θ) with
k = η′(x∗) equals to the Fisher score for this parameter. The
score function of distribution is thus the (generalized)
Fisher score for x∗

An example of distribution without a parameter equal to the
score mean is the gen. Pareto or the gamma distribution with
X = (0,∞),

f (x) =
γα

xΓ(α)
xαe−γx

with SF (x) = k(γx − α) and x∗ = α/γ
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Some other properties

Score moments ESk
F (θ) are finite, θ can be estimated from

1
n

n∑
i=1

Sk
F (xi ; θ) = ESk

F (θ), k = 1, ...,m

SF of heavy-tailed distributions are bounded

ES2
F (θ) is the Fisher information for x∗. The characteristic

of variability of F is the score variance

ω2(θ) =
1

ES2
F (θ)
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Example
Consider the heavy-tailed loglogistic distribution with
X = (0,∞) and

f (x) =
c
τ

(x/τ)c−1

[(x/τ)c + 1]2
= c

(x/τ)c

[(x/τ)c + 1]2
1
x

with score mean x∗ = τ and ω = t/c. The SFD is

SF (x) = −1
τ

d
dx

[xf (x)] =
c
τ

(x/τ)c − 1
(x/τ)c + 1

(2)

Multiplying (2) by (x/τ)−c/2 and by setting c = 4/s, one obtains

SF (x) ∼ (x/τ)2/s − (x/τ)−2/s

(x/τ)2/s + (x/τ)−2/s

which is Kovanic’s score function called estimating irrelevance
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Distance of observations



Zdeněk Fabián Ústav informatiky AVČR Praha

Distance of observations
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A relevant distance in the sample space
I. A ’small’ data sample (x1, ..., xn) ∼ Fθ with unknown θ

estimate θ̂ of θ
x̂∗ = x∗(θ̂), ω̂ = ω(θ̂),

d(x , x∗) = ω̂|SF (x , θ̂)|

II. A large data sample

estimate f̂ (x) of f (x) (histogram, kernel estimate),
using a numerical derivative of f̂ (x) and computation of

ŜF (x)
using the Johnson’s η(x) for the given support

d(x , x∗) ∼ |ŜF (x2)|
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Thank you for attention

Thank you for attention
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