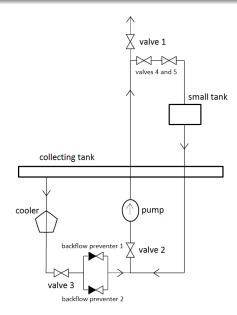
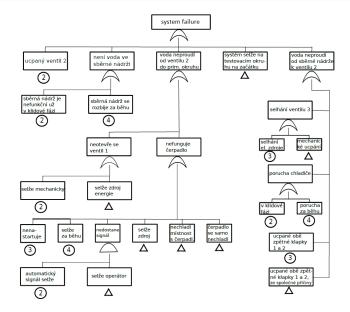
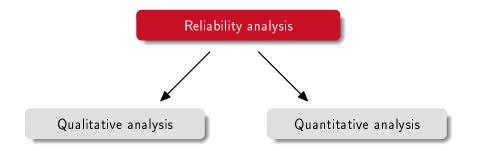
Binary Decision Diagrams in Reliability Theory


Tomáš Masák


Faculty of Mathematics and Physics Charles University in Prague


ENBIS Energy Day and COST Meeting 11th September 2015

O Motivation

- small example
- stating the objectives
- Introduction of BDDs
- O Evaluating effectiveness of BDDs

- we just know whether a component (or a whole system) works or does not work
- it makes sense to consider components as boolean variables

$$x_i = egin{cases} 0, & ext{if the component is working,} \ 1, & ext{if the component is broken} \end{cases}$$

Then the functionality of the system consisting of (basic) components x_1, \ldots, x_n is given by a boolean function, so-called structure function.

Structure function S

$$S(x_1, \dots, x_n) = \begin{cases} 0, & \text{if the system is working,} \\ 1, & \text{if the system is broken} \end{cases}$$

Solution

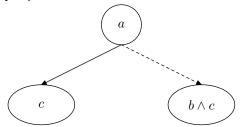
Combination of component's failures that can cause failure of the whole system.

Minimal solution

The smallest combination of component's failures that can cause failure of the whole system.

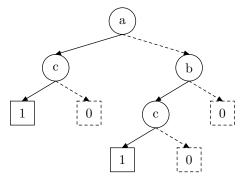
Minimal solution set

Set of all minimal solutions.

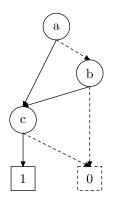

Theorem (Shannon's decomposition)

For boolean function $f = f(x_1, \ldots, x_n)$ and for $i \in \{1, \ldots, n\}$ the following equality holds $f = (x_i \land f_{\{x_i=1\}}) \lor (\neg x_i \land f_{\{x_i=0\}})$.

• For example:


$$(a \lor b) \land c = (a \land c) \lor (\neg a \land b \land c)$$

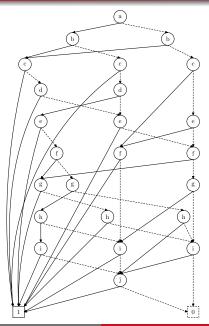
• Graphically represented:

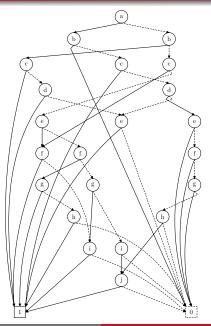

Binary decision diagram (BDD)

- Let's choose an ordering on variables and conduct Shannon's decomposition in this order.
- For our function $f(a, b, c) = (a \lor b) \land c$ we choose naturally a < b < c.
- The result is a *BDD*:

Reduced binary decision diagram (RBDD)

• After removing redundancies, the same function $f(a, b, c) = (a \lor b) \land c$ is more conveniently represented by:


Reduced binary decision diagram (RBDD)


- For given boolean function, there is a unique RBDD representing it (when variable ordering is fixed)*.
- Therefore, tautology test (well-known NP-complete problem) becomes trivial after obtaining RBDD representation of a function.

 \Rightarrow Construction of RBDD must be a NP-hard problem.

* BRYANT, Randal E. (1986) Graph-based algorithms for boolean function manipulation. *Computers, IEEE Transactions on*, 100.8: 677-691.

- (1) RBDD is a suitable representation of boolean function in computer memory.
- (2) RBDDs have a lot of *nice* properties.
- (3) RBDDs bring new options for reliability analysis.
 - We can find minimal solution set of a RBDD more effectively.
 - Afterwards, probability of system failure is trivial to compute.

Minimal solution

The smallest combination of component's failures that can cause failure of the whole system.

- Usually the main purpose of reliability analysis.
- Provide useful insight into complex or large systems.
- Make subsequent analyses much easier.

(+) theoretical comparison of BDDs with classic approaches is very hard, but experimental results are in favor of BDDs

- (+) theoretical comparison of BDDs to classic approaches is very hard, but experimental results are in favor of BDDs
- (+) BDDs can make a better use of additional memory as well as of parallel computing

- (+) theoretical comparison of BDDs to classic approaches is very hard, but experimental results are in favor of BDDs
- (+) BDDs can make very good use of memory and parallel computing
- (+) additional information or experience can be used to improve the performance

- (+) theoretical comparison of BDDs to classic approaches is very hard, but experimental results are in favor of BDDs
- (+) BDDs can make very good use of memory and parallel computing
- (+) additional information or experience can be used to improve the performance
 - (-) partial analysis is not possible with BDDs

Advantages and disadvantages of BDDs

- (+) theoretical comparison of BDDs to classic approaches is very hard, but experimental results are in favor of BDDs
- (+) BDDs can make very good use of memory and parallel computing
- (+) additional information or experience can be used to improve the performance
 - (-) partial analysis is not possible with BDDs
- (- ? +) an efficient implementation is complex and requires careful memory representation

Examples used with a kind permission of Department of Risk Assessment, Temelín Nuclear Power Station