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Ampacity = Ampere capacity of a conductor

Limited by:
1. Conductor thermal limit
2. Minimal clearance of the ground

Why it is important (VARLEY, J. 2009):
1. Demands for power transmission are unstable due to renewable sources,
2. Large safety margin on ampacity remains unused,
3. Too conservative limits on ampacity may yields energy money loss or

stability problems.
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CIGRE model of ampacity

Model:
PJ + Ps + Pc = mccc

dTc
dt + Pr + Pk + Pw

where:
PJ are Joule conductive losses, PJ = RkI2

ef [1 + b(Tc − 273)],
Ps is solar heating, Ps = εσS(T 4

c − T 4
amb)

Pr is radiative cooling
Pc is convective cooling
Pk is corona heating
Pw is water cooling

Properties
I complex non-linear model,
I uncertain inputs – weather conditions: solar, wind, rain
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Experimental line

Data from a line equipped by meteostations are available from ČEPS.

Measurements (irregular sampling):
I solar radiation intensity,
I wind velocity and angle
I ambient and surface conductor temperature
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Deterministic approach
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1. The goal is to reach temperatures under a certain limit,
I errors can be used as safety margin

2. Errors are not constant, they are state dependent
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Statistical approach

Goals
1. Estimate not only the temperature but also the error bound.
2. Calibrate the error bound for reliability

Challenges
1. quantify uncertainty of the inputs (how can we trust the sensors,

potentially predictions)
2. transform the uncertainty through the non-linear model,
3. design model of corrections (callibration)
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Proposed model

1. uncertainty of the inputs
I we operate on one hour window. Uncertainty is modeled by mean and

variance of the values.

2. transform the uncertainty through the non-linear model,
I using sigma point transform on deterministic samples from the

distribution of the inputs

3. design model of corrections (callibration)
I we estimate unknown multiplier, γ, of computed correlation

cov(Tc) = γcov(Tc,model),
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Validation: real data
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Quantile-Quantile plot
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Conclusion

1. Maximum current through a transmission line is restricted by thermal
limit,

2. Temperature of the conductor depends on weather conditions, which
are uncertain,

3. Statistical models calibration aims to provide reliable uncertainty
bound

4. Future work:
4.1 design of model for predicted weather,
4.2 model local corrections,
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