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Zdeněk Fabián
Institute of Computer Science AS CR

Energy Days 2023
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Continuous random variables

Random variable X on an open interval X ⊆ R

Support X , distribution F , density f (x)

(Euclidean) moments EX k =
∫
X xk f (x) dx

Mean EX , variance E(X − EX )2

Observed data Xn = (x1, ..., xn) ... realizations of
(X1, ...,Xn) ∼ Fθ ∈ {Fθ : θ ∈ Θ ⊆ Rm}
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Information in information theory
Information in (x − dx < X < x + dx) is IF (x) = − log f (x)dx

The mean information/uncertainty of event X is the differential
entropy

h(X ) = EIF =

∫
X

IF (x)f (x) dx

However, it is not a right analogue of the entropy of discrete
random variables (it can be negative if a density has a
pronounced central peak)

The differences between differential entropies are taken to
indicate differences in uncertainty: relative entropy

DKL(F ,H) = −
∫
X

log
h(x)

f (x)
f (x) dx
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Information and uncertainty in statistics

Rather unclear:

i/ Fisher information of Fθ

FI(θ) = EθU2
θ = Eθ

(
∂

∂θ
log f (x ; θ)

)2

is not related to distributions, but to parameters of parametric
families

ii/ As uncertainty of random variables is usually taken the
variance. However, it may not exist

Cauchy EX 2 =
∫∞
−∞

x2

(1+x2)
dx
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Inference functions

i/ Probability theory works with ‘pure’ X

ii/ In statistics are often used, instead of x1, ..., xn ... samples
(φ(x1), ..., φ(xn)), where φ is a suitable inference function:

i/ Classical statistics: Fisher scores Uθ(x). For θ ∈ Θm

vector-valued functions

ii/ Robust statistics: (Huber’s) scores. They are scalar-valued
and bounded (suppressing outliers), but not related with the
assumed model Fθ
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Score function in the narrow sense
Since for G on R

∂

∂µ
log g(y − µ) = − 1

g(y − µ)

d
dy

g(y − µ) ≡ SG(y − µ)

for µ = 0 is score function as characteristic of G itself

SG(y) = −g′(y)

g(y)
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Properties of SG(Y )

Score moments ESk
G(Y ; θ) are finite

Typical value is the mode y∗ : SG(y ; θ) = 0: score mean

Measure of variability VarSY = 1/ES2
G(θ) score variance

CLT for iid Y according to arbitrary G

S̄G =
1
n

n∑
i=1

(SG(Yi)

For n→∞
√

nS̄G
D−→ N (0,ES2

G)
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Score function of parametric distributions

SG(y ; θ) = − 1
g(y ; θ)

d
dy

g(y ; θ)

a scalar-valued function even if θ is a vector

However, they are used neither in probability nor in statistics: it
does not work for distributions on X 6= R:

f (x) = 1 on (0,1) : − f ′(x)
f (x) = 0

f (x) = e−x on (0,∞) : − f ′(x)
f (x) = 1
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Transformation-based score

Fabián (2001): X with distribution F on X 6= R is transformed Y
on R with “prototype” G

η(x) : X → R : X = η−1(Y ), F (x) = G(η(x))

with density
f (x) = g(η(x))η′(x)

and the “score function” (t-score) on X is

TF (x) = SG(η(x))
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Densities and t-scores of the “beta set”
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Score mean and score variance

TF (x∗) = SG(η(x∗)) = SG(y∗G) = 0

so that the score mean, typical value od F ,

x∗F = η−1(y∗G)

is the projection of the mode of the prototype G into X

Score variance, a measure of variability of F is

VarSX =
ET 2

F
T ′F (x∗)]2

where T ′F (x) = dTF (x)/dx |x=x∗
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Densities

of the Weibull with the same score mean and of the beta-prime
with the same score variance
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Information and uncertainty functions
Only mean information/uncertainty of cont. r.v. is considered

We construct uF (x) and iF (x). They should have intuitively the
following properties:

i/ X from F with the concentrated mass has high EiF and low
EuF and vice versa.

ii/ The courses of iF (x) and uF (x) of a concrete F should be to
some extent “parallel”: an observation around the score mean
is a likely event carrying a little amount of information and a
little amount of uncertainty as well. A reasonable properties are
iF (x∗) = uF (x∗) = 0

iii/ An increase of iF (x) has in effect a decrease of uF (x)
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Definition: Standard distributions
Let F be a continuous distribution with t-score TF (x). Define
the information function of F as

iF (x) = T 2
F (x)

and the uncertainty function of F as

uF (x) =
iF (x)

[T ′F (x∗)]2

where T ′F (x∗) = dTF (x)/dx |x=x∗

According to the definition, mean information of a continuous
distribution EiF = ET 2

F is the Fisher information for the
score mean and mean uncertainty EuF is the score
variance
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Information and uncertainty functions
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Mean information and differential entropy

The “information function” IG(y) = − log g(y) of information
theory is compared with iG(y)

Information functions “weighted” by densities on bottom panels

Distributions:

1 normal, 2 Gumbel, 3 logistic, 4 extreme value

Zdeněk Fabián Institute of Computer Science AS CR

Entropy, uncertainty and information of continuous random variables



Creating diff. entropy and mean uncertainty
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Parametric distributions
For Fθ we easily generalize the t-score as

SF (x ; θ) = SG(η(x))η′(x∗)

where x∗ is the score mean x∗

Define the information function of F as

iF (x ; θ) = S2
F (x ; θ)

Let θ = (x∗, δ). The uncertainty function of F we define by

uF (x ; θ) =
iF (x ; θ)

[ES′F ]2

where S′F = ∂SF (x ;x∗,δ)
∂x∗
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beta distribution

f (x ; p,q) =
1

B(p,q)
xp−1(1− x)q−1, TF (x ; p,q) = (p + q)x − p

has linear t-score and its mean uncertainty is its variance

ω2 = VarSX =
pq

(p + q + 1)(p + q)2

beta(p,p) with p = 0.5,1,2, and
√

VarS of beta(p,p) as a
function of p limp→0 beta(p,p) = (1

2 ,
1
2)
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Information and uncertainty in a data sample

Let Xn be a random sample from F (x ; x∗). Information
contained in Xn is related to the score mean of F . The average

1
n

n∑
i=1

S2
F (xi ; x∗)

converges as n→∞ to a finite value ES2
F (x∗). A new

observation increases the precision of the estimate of x∗ only,
reducing the uncertainty (variance if asymptotically normal) of
the estimate
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Information distance of distributions

Relative entropy (Kullback-Leibler distance (KL)

DKL(F ,H) = −
∫
X

log
h(x)

f (x)
f (x) dx

Information or score distance (SD)

DSD(F ,H) =
1

2ES2
F

∫
X

[SF (x)− SH(x)]2f (x) dx

Let Dj =
∫
X ρj(x) dx
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