

Energy Trading in Day-Ahead Market

Ilyas Agakishiev

Karel Kozmík

Alla Petukhina

Wolfgang Karl Härdle

Milos Kopa

Department of Probability and Mathematical Statistics Faculty of Mathematics and Physics **Charles University**

Energy Days 2023

Types of Electricity Markets

- Centralized platforms where participants exchange electricity based on price willing to pay or receive, and capacity of electrical network.
- Continuous-time Auction
 - Continuous submission and storage of orders
 - Each time a deal is feasible, it is executed
 - Example: intraday market

Types of Electricity Markets

Fixed Gate Auction

- Sell or buy orders for several areas and/or several hours
- Submissions are closed at a pre-specified time (gate closure)
- The market is cleared
- Example: day-ahead

Source: https://www.epexspot.com

Post-Brexit GB Power market

- ☑ Not a part of the European Single Day-ahead Coupling (SDAC)
- ☑ Two separate day-ahead 60-min auctions for GB:
 - Exchange EPEX
 - Exchange Nord Pool
- Opportunity to profit: long in one and short in the other

Energy Trading

- Three key prices each hour
 - First auction price (EPEX GB)
 - Second auction price (Nord Pool)
 - System price
- Auctions
 - Submission of price and volume bids in advance
 - Price is determined by the auction
 - The amount is traded (win of the auction): offered higher price to buy (lower to sell)
- All left after the second auction is settled by system prices

Price Seasonality

- Peaks in morning
- Peaks in evening "rush" hours
- Price higher on weekdays vs weekends

Mean electricity prices during the day and week, EPEX Auction Q

Research challenges

- Extend Distributional multilayer perceptron (DMLP) for multivariate case EPF
- Test multivariate DMLP against state of the art benchmarks
 - LSTM architecture
 - LASSO quantile regression (LASSO QR)
- Develop trading application for GB electricity market
- Evaluate trading results for various investors objectives

Outline

- 1. Motivation \checkmark
- 2. Methodology
- 3. Data
- 4. Empirical results
- 5. Outlook

Illustration of strategy

Distributional Modeling

- Whole distribution needed to optimally place bids
 - Point estimate of mean: no probability of the bid being accepted
 - Risk can be incorporated, e.g. CVaR
 - Proper Risk management

11

Formal objective

Better fit for electricity prices

JohnsonSU and Gaussian fit for sample electricity data. (EPEX) Q

Why Johnson's SU?

- Captures skewness and kurtosis well
- Easy to implement in the parameter space
- Easily expandable to multivariate case

Setup of distributional forecast

□ For multiple energy prices $Y \in \mathbb{R}^{T \times J}$ - energy prices, $X \in \mathbb{R}^{T \times p}$ -

features, Johnson's SU parameter vectors $\Theta = (\Gamma, \Xi, \Delta, \Lambda)$:

$$\hat{\Theta}_i = \underset{G \in \mathcal{G}}{\operatorname{arg max}} \sum_{j=1}^J \mathscr{L}\{\theta_{i,j}; G(x_i)\},\$$

- □ G nonparametric function, NN approximated
- □ J = 3 (3 different prices), *L* likelihood, p features, T = 10176 data points (length of moving window)
 Feature list

Distributional Neural Network

- Neural network used to predict parameters of a distribution
- Negative log likelihood used as the loss function, F cdf

Network training

NN architecture

- 3 hidden layers
- First layer: Fully connected or LSTM
- ► Using dropout and L_2 regularization
- 3 separate output layers 3 prices with 4 neurons Johnson's SU distribution parameters
- Retraining every 30 days
- Loss function: NLL of Johnson's SU

•

Reference model - LASSO Quantile Regression

□ $Y \in \mathbb{R}^{n \times J}$ - energy prices, $X \in \mathbb{R}^{T \times p}$ - features, J = 3

$$\hat{\beta}_{\tau,\lambda,t} = \arg\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \rho_\tau \left(Y_i - X_i^\top \beta \right) + \lambda \|\beta\|_{\tau}$$
$$\tau \in (0,1), \ \rho_\tau(u) = u\{\tau - \mathbf{I}(u < 0)\}$$

- $\Box \ \tau = \{0.01, 0.02, \dots, 0.99\}$
- \square $\lambda = 0.01$ tuning parameter
- $\Box T = 10176 \text{ data points (length of moving window)}$
- Estimation every 30 days

Data

□ Granularity

- Hourly for most features mainly electricity auction prices
- Daily for gas, emissions etc.
- □ Time frame: 01.01.2021 12.09.2022
- Energy features:
 - Electricity auction prices, demand (Provided by Suena)
 - Solar and wind generation related prediction (Provided by Suena)
 - Brent oil prices (Source: <u>FED/FRED</u>)
 - Gas, Emission futures (Source: investing.com)
 - Weather data (Source: <u>Copernicus Climate Change Service</u>)

Prediction construction

- Data split
 - Training period: 01.01.2021 28.02.2022 (first moving window)
 - Testing period: 01.03.2022 12.09.2022

□ Input:

- ▶ p = 40 features
 - 1. Energy features

Details

- 2. Additional engineered features:
 - ★ Previous prices
 - ★ Day of week, hour of day
 - ★ Holiday
 - ★ Weather anomaly

Output:

Parameters of Johnson's SU for first auction, second auction and system price

Resulting CRPS

CRPS values	EPEX	Nordpool	System
LSTM	16.78	16.55	25.98
MLP	16.23	19.80	25.54
Quantile LASSO	10.95	11.60	24.92
Simple fit (last 30 days)	22.38	22.55	27.90

Execution time and distribution fitting

20

Histogram

Quantile histogram for EPEX: MLP (left) and Quantile LASSO (right) Q

21

Trading framework

□ Trading scenario: trade 1 unit of energy each hour

- Sample 1000 scenarios from the predicted distribution
- □ Apply one of 4 trading aggregates (investor objectives):

Mean

Median

Prob - number of the scenarios, we are making profit

Mean-CVaR (risk-adjusted absolute return)

$$U_t \stackrel{def}{=} \mu_t - \rho \cdot CVaR_t$$

where μ_t - mean return, ho = 0.03 - risk aversion parameter and

 $CVaR_t$ - conditional Value at Risk 5%

Trading results (MLP)

Cumulative wealth

Absolute gain/loss for each traded hour

Mean, Median, Prob, Mean-CVaR

Trading results (MLP)

Strategy	AV	Var	Sharpe
Mean	0.0101	0.0448	0.2262
Median	-0.0043	0.0072	-0.6004
Prob	-0.0045	0.0070	-0.6417
Mean-CVaR	0.0104	0.0089	1.1726

AV and Var are mean and variance of out-of-sample returns.

Trading results (LASSO QR)

Cumulative wealth

Absolute gain/loss for each traded hour

Mean, Median, Prob, Mean-CVaR

Trading results (LASSO QR)

Strategy	AV	Var	Sharpe
Mean	0.0171	0.0531	0.3214
Median	-0.0128	0.0335	-0.3823
Prob	-0.0128	0.0332	-0.3838
Mean-CVaR	0.0119	0.0123	0.9641

AV and Var are mean and variance of out-of-sample returns.

Conclusion

DMLP version for multivariate case was created

- for 3 prices via Johnson's SU distribution
- dependence accounted for (via Z-scores)
- Performance against two benchmarks
 - LSTM architecture does not outperform DMLP
 - LASSO QR outperforms (higher CRPS)
 - DMLP the best performing in terms of computational speed
- Trading performance between DMLP and QR is comparable (AV, Var, Sharpe)
- Four different investor objectives were tested: mean, median, probabilistic and risk-adjust (Mean-CVaR)

Future research

- Use quantile prediction with neural networks
- Use Gaussian copula instead of correlation matrix for Z-scores
- Outlier "smoothing" / removal
- Introduce batteries = energy storing
 - Observe changing results with changing battery efficiency

References

- Marcjasz G, Narajewski M, Weron R, Ziel F (2022) Distributional neural networks for electricity price forecasting. <u>arXiv preprint</u> <u>arXiv:2207.02832</u>.
- Stanfield PM, Wilson JR, Mirka GA, Glasscock NF, Psihogios JP Davis JR (1996) Multivariate input modeling with Johnson distributions. In *Proceedings of the 28th conference on Winter simulation*, 1457-1464.
- Weron R (2014) Electricity price forecasting: A review of the stateof-the-art with a look into the future. International journal of forecasting 30, 1030–1081.

References

Keles D, Scelle J, Paraschiv F, Fichtner W (2016) Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. Applied energy 162, 218–230.

Peter SE, Raglend I (2017) Sequential wavelet-ANN with embedded ANN-PSO hybrid electricity price forecasting model for indian energy exchange. Neural Computing and Applications 28, 2277–2292.

Li W & Becker DM (2021) Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling. Energy, 237.

References

- Nowotarski J, Weron R (2018) Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renewable and Sustainable Energy Reviews, 81, 1548-1568.
- Petropoulos F, Apiletti D, Assimakopoulos V, Babai MZ, Barrow DK, Taieb SB (2022) Forecasting: theory and practice. International Journal of Forecasting.
- Melzer A, Härdle WK, Cabrera BL (2021) Joint Tensor Expectile Regression for Electricity Day-Ahead Price Curves (<u>SSRN link</u>)

