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⊡ Centralized platforms where participants exchange electricity 
based on price willing to pay or receive, and capacity of electrical 
network.


⊡ Continuous-time Auction 

▶ Continuous submission and storage of orders
▶ Each time a deal is feasible, it is executed

▶ Example: intraday market


Types of Electricity Markets
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▶ Sell or buy orders for several areas and/or several hours

▶ Submissions are closed at a pre-specified time (gate closure) 

▶ The market is cleared 

▶ Example: day-ahead

Types of Electricity Markets

Source: https://www.epexspot.com

Motivation

https://www.epexspot.com/en/market-data?market_area=GB&trading_date=2022-10-16&delivery_date=2022-10-17&underlying_year=&modality=Auction&sub_modality=DayAhead&technology=&product=60&data_mode=aggregated&period=&production_period=
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⊡ Two separate day-ahead 60-min auctions for GB:


▶ Exchange EPEX

▶ Exchange Nord Pool 


⊡ Opportunity to profit: long in one and short in the other

Post-Brexit GB Power market

EPEX GB 60 min Day-
Ahead  
Auction 
9:20 Closure time 
9:39 Res. Publication

Nord Pool 60 min 
Day-Ahead  
Auction 
09:50 Closure time 
10:10 Res. Publication

7:00 18:00
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▶ First auction price (EPEX GB)

▶ Second auction price (Nord Pool) 

▶ System price


⊡ Auctions

▶ Submission of price and volume bids in advance

▶ Price is determined by the auction

▶ The amount is traded (win of the auction): offered higher price 

to buy (lower to sell)


⊡ All left after the second auction is settled by system prices

Energy Trading

Details

https://www.epexspot.com/en/gb-market-post-brexit
https://www.nordpoolgroup.com/en/Market-data1/GB/Auction-prices/UK/Hourly/?view=table
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⊡ Peaks in morning

⊡ Peaks in evening “rush” hours

⊡ Price higher on weekdays vs weekends
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⊡ Test multivariate DMLP against state of the art benchmarks


▶ LSTM architecture

▶ LASSO quantile regression (LASSO QR)


⊡ Develop trading application for GB electricity market 

⊡ Evaluate trading results for various investors objectives

Research challenges



Outline

Energy Trading in Day-Ahead Market

1. Motivation ✓


2. Methodology


3. Data


4. Empirical results


5. Outlook
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▶ Point estimate of mean: no probability of the bid being accepted

▶ Risk can be incorporated, e.g. CVaR

▶ Proper Risk management 

Distributional Modeling

Two PDFs: ￼  and ￼N(100,102) N(100,202)

Methodology

Formal objective
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fit for electricity prices

JohnsonSU and Gaussian fit for sample electricity data. (EPEX)

Methodology
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⊡ Easy to implement in the parameter space 

⊡ Easily expandable to multivariate case

Why Johnson’s SU?
Methodology
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 ￼  - energy prices, ￼  - 

features, Johnson’s SU parameter vectors ￼ :


￼ ,


⊡ ￼  nonparametric function, NN approximated


⊡ ￼  (3 different prices), ￼  likelihood, ￼  features, ￼  

data points (length of moving window)


Y ∈ ℝT×J X ∈ ℝT×p

Θ = (Γ, Ξ, Δ, Λ)

Θ̂i = arg max
G∈𝒢

J

∑
j=1

ℒ{θi,j ; G(xi)}

G

J = 3 ℒ p T = 10176

Setup of distributional forecast

Feature list
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⊡ Negative log likelihood used as the loss function, ￼  cdfF

Distributional Neural Network
Methodology
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▶ 3 hidden layers

▶ First layer: Fully connected or LSTM

▶ Using dropout and ￼  regularization

▶ 3 separate output layers - 3 prices with 4 neurons - Johnson’s 

SU distribution parameters

⊡ Retraining every 30 days

⊡ Loss function: NLL of Johnson’s SU

L2

Network training
Methodology



Energy Trading in Day-Ahead Market

￼

 ￼  - energy prices, ￼  - features, ￼ 


￼ 


⊡ ￼  ￼ 


⊡ ￼ 


⊡ ￼  - tuning parameter


⊡ ￼  data points (length of moving window)


⊡ Estimation every 30 days


Y ∈ ℝn×J X ∈ ℝT×p J = 3

̂βτ,λ,t = arg min
β∈ℝp

n

∑
i=1

ρτ (Yi − X⊤
i β) + λ∥β∥1

τ ∈ (0,1), ρτ(u) = u{τ − I(u < 0)}

τ = {0.01,0.02,…,0.99}

λ = 0.01

T = 10176

Reference model - LASSO Quantile Regression
Methodology
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▶ Hourly for most features - mainly electricity auction prices

▶ Daily for gas, emissions etc.


⊡ Time frame: 01.01.2021 - 12.09.2022 

⊡ Energy features:


▶ Electricity auction prices, demand (Provided by Suena)

▶ Solar and wind generation related prediction (Provided by Suena)

▶ Brent oil prices (Source: FED/FRED)

▶ Gas, Emission futures (Source: investing.com)

▶ Weather data (Source: Copernicus Climate Change Service)


Data

Energy Trading in Day-Ahead Market

Data

https://fred.stlouisfed.org/series/DCOILBRENTEU
https://uk.investing.com/commodities/natural-gas-historical-data
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form
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▶ Training period: 01.01.2021 - 28.02.2022 (first moving window)

▶ Testing period: 01.03.2022 - 12.09.2022 


⊡ Input:

▶ ￼  features


1. Energy features

2. Additional engineered features:

★ Previous prices

★ Day of week, hour of day

★ Holiday

★ Weather anomaly


⊡ Output:

▶ Parameters of Johnson’s SU for first auction, second auction 

and system price

p = 40

Prediction construction

Energy Trading in Day-Ahead Market

Data

Details
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fit (last 30 days) 22.38 22.55 27.90

Execution time and distribution fitting
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⊡ Sample 1000 scenarios from the predicted distribution 

⊡ Apply one of 4 trading aggregates (investor objectives): 


▶ Mean


▶ Median


▶ Prob - number of the scenarios, we are making profit


▶ Mean-CVaR (risk-adjusted absolute return)


￼ 


where ￼  - mean return, ￼  - risk aversion parameter and 

￼  - conditional Value at Risk 5%

Ut
def= μt − ρ ⋅ CVaRt

μt ρ = 0.03

CVaRt

Trading framework
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￼  and ￼  are mean and variance of out-of-sample returns.AV Var
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￼  and ￼  are mean and variance of out-of-sample returns.AV Var
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▶ for 3 prices via Johnson’s SU distribution 

▶ dependence accounted for (via Z-scores)


⊡ Performance against two benchmarks


▶ LSTM architecture does not outperform DMLP

▶ LASSO QR outperforms (higher CRPS)

▶ DMLP the best performing in terms of computational speed


⊡ Trading performance between DMLP and QR is comparable (AV, 
Var, Sharpe)


⊡ Four different investor objectives were tested: mean, median, 
probabilistic and risk-adjust (Mean-CVaR)

Conclusion
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⊡ Use Gaussian copula instead of correlation matrix for Z-scores


⊡ Outlier “smoothing” / removal


⊡ Introduce batteries = energy storing


▶ Observe changing results with changing battery efficiency

Future research
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