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1. What is Prescriptiveness in Maintenance?
2. Domestic Heat Management
3. Realising Explanations with ODEs

4. Prescriptions from Explainable Al

Software Competence Center Hagenberg:
SCCH ~130 Employees, established 1999
31 running Projects, 13 Research Foci,

4 Areas (among which: Data Science)
Research and project work in cooperation
with companies from service & production
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Prescriptiveness in Predictive Maintenance scch {}

* Predictive Maintenance PredMAIn .
1. Collecting Information about Regular Case (‘Phase 1’) ATCZ279

2. Collecting Information about Anomalies & extracting Features
3. Selecting Features which are relevant Health Indicators (HI)
4. Predictive Modeling of State of Health and

5. Remaining useful lifetime (RUL).
* Prescriptive Maintenance

* Collect Information about the quality of maintenance cycles

(e.g.: optimal cost/time of maintenance, length of cycle, ....)
 Extracting and Selecting Features relevant for best cycles
» Choosing parameters for initiating optimal maintenance cycles

[1] Magbool Khan; Arshad Ahmad; Florian Sobieczky; Mario Pichler; Bernhard A. Moser; Ivo Bukovsky: A Systematic Mapping Study of Predictive Maintenance in SMEs, IEEE Access vol. 10 2022
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* Predictive Maintenance
* Collecting Information about Regular Case (‘Phase 1°)
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 Extracting and Selecting Features relevant for best cycles - -
» Choosing parameters for initiating optimal maintenance cycles
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Case Study: Ball-screw health under high load scch {}

Long Short-Term Memory Based Semi-Supervised Encoder-
Decoder for Early Prediction of Failures in Self-lubricating
Bearings

Vigneashwara Pandiyan® * Mehdi Akeddar? . Josef Prost °, Georg Vorlaufer *, Markus Varga °,

Data from the Experiment: Kz Wasmer

¢ Laboratery for Advanced Materials Processing (LAMP), Swiss Federal Laboratories for Materials Science and
Technology (Empal-CH-3602 Thum, Switzerland

b AC2T research GmbH. Viktor-Kaplan-Strasse 2/C, 2700 Wiener Neustadt, Austria

Hi: sd{Ball Screw Hor_ [mVig]) / Thresh = 567.97

HI: Bearing_Side_[1]_[mV/g] / Thresh = 402.78 HI: Bearing_Side_[1]_[mV/g] / Thresh = 402
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Left: Offline - threshold is largest limit for which exceedence-times are ,uniformly distributed’ - Mid: Online Use of threshold enables early anomaly detection —
Right: Different Feature used for health-indication with more expressive indication of critical wear phase.

. . . . . . . . R ing-i N | A |
* Health indicating feature is used in beginning of maintenance cycle to set threshol "2~ ™ i
4000
* First appearance of concentrated exceedences sets state to ,unhealthy’ 2 o0
» Automatic labelling of data -> Training of Predictive Model. £
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Fig. 3 from Pandiyan et. al.(2020): Axial Force

Pandiyan et. Al. Long Short-Term Memory Based Semi-Supervised Encoder-Decoder for Early Predictions in Self-lubricating Bearings, (2020)
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PV, Battery, ASHP, Global radiation, Grid — scch {}
What is the ideal charging schedule’ ,

PV
PV Ap

i BT

Ap(i) = Pp(i) + pup(i) + p5() — pp(i) — Ppa(i)
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[2] F. Sobieczky, C. Lettner, T. Natschlager, P. Traxler. Adaptive heat pump and battery storage demand side energy management, E3S Web Conf. 22 00162 (2017) https://doi.org/10.1051/e3sconf/20172200162
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PV, Battery, ASHP, Global radiation, Grid —

What is the ideal charging schedule’ "
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[2] F. Sobieczky, C. Lettner, T. Natschlager, P. Traxler. Adaptive heat pump and battery storage demand side energy management, E3S Web Conf. 22 00162 (2017) https://doi.org/10.1051/e3sconf/20172200162
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PV, Battery, ASHP, Global radiation, Grid —
What is the ideal charging schedule?

One can see realised return
tempereature (thick blue) to
be close to an expected
temperature (thick red),
realised by discharging
battery after initially using
(early) grid-power. Third
column: Effect of Increase of
variable a (building‘s cool-off-
rate) by a factor of 1.2: Heat
Pump is only heated up in the
morning to the minimum, as it
cannot achieve overcoming of
later morning minimal demand
without grid-power, as high
demand cannot be reached
with battery.
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[2] F. Sobieczky, C. Lettner, T. Natschlager, P. Traxler. Adaptive heat pump and battery storage demand side energy management, E3S Web Conf. 22 00162 (2017) https://doi.org/10.1051/e3sconf/20172200162
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PV, Battery, ASHP, Global radiation, Grid —

Results: Amount Saved in comp. to fixed t(«a)
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Conclusions:

« Model predictive control enables
interpretation of lack of desired effect.

* Model-Accuracy of predicted charging
schedule has significant impact on
savings!

scch {}
i.) Without I i.) With I ii.) Without I ii.) With I

o Days | Cost/ % Days | Cost/ % Days | Cost/ % Days | Cost/ %
m 0.00 | 21 605/ 0 21 600/ 0 21(0) 605/0 21 600/0.0
0.001 | 21 605/ 0 21 600/ 0 18(2) 347/43 18(2) 344/42
0.002 | 20 443/27 21 600/ 0 14(4) 374/38 12(2) 378/37
0.01 16 420/31 17 378/37 13(3) 377/38 12(2) 370/38
0.02 15 427/29 15 424/29 11(3) 326/46 11(3) 324/46
0.05 | 13 377/38 13 379/37 11(2) 326/46 11(2) 324/46
0.1 12 349/42 12 346/42 12(1) 349/42 12(1) 345/42
0.2 11 326/46 11 324/46 11(1) 326/46 11(1) 324/46
0.3 10 372/39 10 369/39 8(2) 372/39 8(2) 344/43

[2] F. Sobieczky, C. Lettner, T. Natschlager, P. Traxler. Adaptive heat pump and battery storage demand side energy management, E3S Web Conf. 22 00162 (2017) https://doi.org/10.1051/e3sconf/20172200162
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Predicting the effect of external heat sources: scch {}
A Heat Management Problem

Newton‘s Cooling Law: T' = —a(T — T,)
a = coefficient of heat transfer
Consider the following problem:

Assume you are entering an over-heated room
in which you plan to remain for a longer while:

* At first, you completely turn off the radiator to
reach quickest cool-off.

» Then, after realising ‘it has got cold’, you re-
invoke the heating cycle to let the
temperature reach a desired stationary value.

14



Predicting the effect of external heat sources:

A Heat Management Problem

Consider the following problem:

Assume you are entering an over-heated room
in which you plan to remain for a longer while:

* At first, you completely turn off the radiator to
reach quickest cool-off.

» Then, after realising ‘it has got cold’, you re-
invoke the heating cycle to let the

temperature reach a desired stationary value.

Newton‘s Cooling Law: T' = —a(T —

a = coefficient of heat transfer

If there IS an external heat source:
T'"=—a(T—-T,) +b
b = a rate of temperate change.

... a linear inhomogeneous ODE:

!

y = a;y + b,

scch {}

Ta)

where a; = cons. and b;=step-function.

[3] F. Sobieczky, E. Dudkin, J. Zenisek. Learning the inhomogeneous term of a linear ODE. 5th Int. Conf. on Industry 4.0 and Smart Manufacturing, 2023, Elsevier Procedia Computer Science
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Predicting the effect of external heat sources:

A Heat Management Problem

Heat Management: gbm
A=0.1,b=0.05

T: (Part from ambient to initial)

00 02 04 06 08 10

0.06

Timet

« Assume at first only homogeneous solution (maybe a

identified ‘online’): @ (estimate).

» Use observations to train model taking @ and initial

points to estimate temperature line as it is progressing

from user's handling the thermostat [3].

« Predict: T, as Tye ™% + ¢,

100

0.1

0 002

Newton’s Cooling Law: T' =
a = coefficient of heat transfer

If there IS an external heat source:
T'"=—a(T—-T,) +b
b = a rate of temperate change.

... a linear inhomogeneous ODE:

y' = a;y + b,

[3] F. Sobieczky, E. Dudkin, J. Zenisek. Learning the inhomogeneous term of a linear ODE. 5th Int. Conf. on Industry 4.0 and Smart Manufacturing, 2023, Elsevier Procedia Computer Science

—a(T —

scch {}

Ta)

where a; = cons. and b;=step-function.
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Predicting the effect of external heat sources:

A Heat Management Problem

Heat Management: gbm
A=0.1,b=0.05

0.1

0.06

T: (Part from ambient to initial)

0 002

00 02 04 06 08 10

0 20 40 60 80 100
Time t
Realise that difference of homogeneous solution and real
value is result of presence of inhomogeneous term b, [3]:
be=¢ + @&
* In this way the Al-prediction received an explanation!

 Estimate of step function is magenta-curve for XGB.

Newton‘s Cooling Law: T' = —a(T —

a = coefficient of heat transfer

If there IS an external heat source:
T'"=—a(T—-T,) +b
b = a rate of temperate change.

... a linear inhomogeneous ODE:

!

y = a;y + b,

scch {}

Ta)

where a; = cons. and b;=step-function.

[3] F. Sobieczky, E. Dudkin, J. Zenisek. Learning the inhomogeneous term of a linear ODE. 5th Int. Conf. on Industry 4.0 and Smart Manufacturing, 2023, Elsevier Procedia Computer Science
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Predicting the effect of external heat sources:

A Heat Management Problem

Heat Management: avNMet

A=0.1, b=0.05
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Realise that difference of homogeneous solution and real
value is result of presence of inhomogeneous term b, [3]:
be=¢ + @&

* In this way the Al-prediction received an explanation!

 Estimate of step function is magenta-curve for AveNNet.

Newton‘s Cooling Law: T' = —a(T —

a = coefficient of heat transfer

If there IS an external heat source:
T'"=—a(T—-T,) +b
b = a rate of temperate change.

... a linear inhomogeneous ODE:

!

y = a;y + b,

scch {}

Ta)

where a; = cons. and b;=step-function.

[3] F. Sobieczky, E. Dudkin, J. Zenisek. Learning the inhomogeneous term of a linear ODE. 5th Int. Conf. on Industry 4.0 and Smart Manufacturing, 2023, Elsevier Procedia Computer Science
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Predicting the effect of external heat sources: scch {}
A Heat Management Problem

Table 1. Results of the Experiment of Section 3 - CV with ten (training) folds to one (testing). Parameters tuned for same value of p.

Predictive Model RMSE(b, — b,) RMSE(S - S) P
Random Forest (rf) 0.438 +0.004 1.07 £ 0.44 0.098 = 4.6e-05
Stochastic Boosted Trees (gbm) 0.457+0.112 1.43 + 0.69 0.098 + 9.4e-05
Averaged Model Neural Network (avNNet) 0.346 = 0.036 0.89 £0.74 0.098 + 2.88e-04
Heat Management: Small Oscillatiens - Random Forest(red), GBM(Magenta), avMNet{purple) Heat Managemeant: Small Oscillations - Randem Forest{red), GEM{Magenta), avNMNeat{purple)

E g I H=0.1, b=0u04 . ? g . ||I R=001, B=0.01 .

§ s \5 res I ey '& .r'“.'x P B g. § = - L "4' |.'h'h ﬁ- "f‘\"'\ [ g‘

P2 =T \“-—f’ “—f v s A= NE ) *‘K’“ - *‘“‘J”A \*4’/“ = S v

E = W I‘.\;-"'{ W \ A . E - | -\L}' \'\ / Y ; ,-' '\ /‘ \H 4 \'-. o :‘, 9

2 =] o L - | | _E =] WAV, W \‘._.-,» W) .
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Fig. 2. Left: Modelling the residual error as a function of ¢; and Yf!,k}. - Right: Modelling &, over pairs of data (#;, Y;,). The green curve is the full
prediction ﬁ given by Step 5 of X-ODE, seen to almost completely cover the (black) observed raw data.

[3] F. Sobieczky, E. Dudkin, J. Zenisek. Learning the inhomogeneous term of a linear ODE. 5th Int. Conf. on Industry 4.0 and Smart Manufacturing, 2023, Elsevier Procedia Computer Science
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Prescriptions

scch {}

Anomaly with thresheld 9.1

* Proposition:

Prescriptive Maintenance refers to the quality of the predictive
model used to relate the input variables to the qualitative
aspects of the application.

« Example: If an RUL-predictor includes an indication of its
result’'s dependence on a physical parameter allowing to
maximize this value then it is prescriptive.

In other words: Ignorance about the features® effects as they
are changed makes a predictive model non-prescriptive.

In this example, the ball-screw’s vertical
acceleration was measured for each cycle, and it
was discovered that the kurtosis of the empirical
measure is a good Hl. It also allows to give the
‘Prescription’:

Look for ways to prevent the kurtosis to rise, as
long as possible - this may increase the RUL!

21



Prescriptions scch {}

Anomaly with thresheld 9.1

-> Since with prescriptiveness the 4 | j
features® tendencies to improve some i " ‘ IH'”
quality is looked for, it is possible that | " ’ | b I|.,|\' |
Explainable Al will play an important O Y L |'| L - o M -
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Literature:
[1] Magbool Khan; Arshad Ahmad; Florian Sobieczky; Mario Pichler; Bernhard A. Moser; Ivo Bukovsky: A ;W W W

Systematic Mapping Study of Predictive Maintenance in SMEs, IEEE Access vol. 10 2022
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