# Small Modular Reactors – Challenge for Nuclear Energy Vladimír Wagner

#### Nuclear Physics Institute of CAS, FNPI CTU Prague

#### **1. Introduction**

- 2. Present energy sector at Europe
  - 2.1 Present energy crisis at Europe2.2 Low-emission mix needs nuclear
- **3.** The current situation in nuclear energy
  - 3.1 The main challenges
  - **3.2 Care of generation II blocks**
  - **3.3 Installation of generation III reactors**
  - **3.4 Use of nuclear energy for heating**
  - **3.5 Closing the fuel cycle generation IV blocks**
- 4. Small Modular Reactors
  - 4.1 Why do we need Small Modular Reactors?
  - 4.2 Classic types of Small Modular Reactors
  - 4.3 Innovative types of SMR
- **5.** Conclusion



**Olkiluoto 3 – started to produce electricity** 



SMR ACP100 construction is in progress

#### Introduction

**Decommissioning of the last reactors in Germany** 

Start-up of the Olkiluoto 3 and Mochovce 3 reactors

France, Sweden and Switzerland have a lowemission electric power industry based on nuclear and RES, and now also Slovakia, Finland is working on it





0

### **European energy – current situation**

- 1) France is again the largest exporter of electricity (followed by Sweden and Czechia).
- 2) Germany has become a net importer (although it still has enough power in coal, but for economic reasons it prefers to import from France and the Czech Republic).
- 3) Surpluses grow in ideal times for sun and wind and shortages in times without wind and sun.



### **Europe - great interest in new blocks**

- 1) A number of countries have decided to operate existing nuclear units for as long as possible. In the Czech Republic, Dukovany has been operating for 60 years, possibly even more.
- 2) The whole series of countries want to build new blocs: France, Great Britain, Sweden, the Netherlands, Slovenia, Bulgaria, Hungary, the Czech Republic ... the first to build in Poland, and Italy is considering this option.
- 3) In many cases smaller blocks are suitable for smaller economies (Czech Republic, Slovenia, the Netherlands, Slovakia) → EDF a KHNP license smaller versions of their reactors, even if they do not plan to build them in France and South Korea.
- 4) It would be sensible to build the blocks in series, now it seems that there could be rather a shortage of supplier capacity and everyone will apply.
- 5) Interest in small modular reactors is growing their construction is also being planned by private investors, not only those sponsored by the state.



## **Nuclear power – present chalanges**

The basic tasks:

- 1) Long term operation of Generation II reactors
- 2) Transition to Generation III reactors
- 3) Introduction of Small Modular Reactors
- 4) Nuclear heat for heating
- 5) Development of Generation IV reactors

Renaissance in China, stagnation in Europe and USA USA and Europa – extending the life of blocks The renewal of competence and knowledge in this sector is crucial for Europe



**Small Modular Reactor HTR-PM** at China





#### Fast sodium reactor BN-800 –Beloyarsk 3

#### **Reactor EPR (Olkiluoto 3)**

#### **Nuclear sources – current situation - statistic**

Safe long term operation of existing units and the transition Generation II to III. Number of blocks: 436 Installed power: 392 GWe (halfway through 2023) Under construction: 60 blocks with power 67 GWe

The nuclear share of electricity production is slightly over 10 % Future development depends on the resumption of the work of Japanese blocks and two trends, the shutdown of old blocks and the start-up of new ones (China has overtaken France and is in second place)



### **Extending the service life of existing nuclear units**

- 1) Europe has over 20 % of its electricity nuclear, operation as long as possible is needed.
- 2) Belgium is extending the operation of its more modern nuclear reactors beyond 2025.
- 3) A number of countries anticipate operating their reactors for sixty years or more
- 4) Europe needs to provide both service and fuel for these units
- 5) The importance of taking care of the reactors was shown (the welds at France)

Beznau 1 a 2 (Switzerland) belong to the oldest Blocks (more then 50 years), Beznau 1 start of operation 1969





Loviisa 1 and 2 (VVER440) has been running for over 40 years, license application for 80 years



Started and stopped blocks

Capacity factor (2017 - 2021), dependency on age of reactor

## **Reactor AP1000 (Westinghouse USA)**

Four reactors in operation in China:

|           | Power C  | <b>Commercial Operation</b> | <b>Cumulative Load Factor</b>   |
|-----------|----------|-----------------------------|---------------------------------|
| Sanmen 1  | 1150 MWe | September 2018              | 89,2 %                          |
| Sanmen 2  | 1150 MWe | November 2018               | 69,9 % (89,3 %) Problems - 2019 |
| Haiyang 1 | 1130 MWe | October 2018                | 90,0 %                          |
| Haiyang 2 | 1130 MWe | January 2019                | 92,8 %                          |

Two reactors are launching in USA:

| Vogtle 3 | 1120 MWe | July 2023          |
|----------|----------|--------------------|
| Vogtle 4 | 1120 MWe | <b>Fuel loaded</b> |

Four CAP1000s under construction (Sanmen 3 a 4, Haiyang 3 a 4), construction of additional units approved at Lianjing and planned for Lufeng





# APR1000 (APR1400) (KHNP, South Korea)

Three in operation and three under construction in South Korea:

|                       | Power C  | ommercial Operation | <b>Cumulative Load Factor</b> |
|-----------------------|----------|---------------------|-------------------------------|
| Sauel 1 (Shin Kori 3) | 1340 MWe | December 2016       | 80,1 %                        |
| Sauel 2 (Shin Kori 4) | 1340 MWe | August 2019         | 79,4 %                        |
| Sauel 3 (Shin Kori 5) | 1340 MWe |                     |                               |
| Sauel 4 (Shin Kori 6) | 1340 MWe |                     |                               |
| Shin Hanul 1          | 1340 MWe | December 2022       |                               |
| Shin Hanul 2          | 1340 MWe |                     |                               |

Three in operation and one is being completed in the UAE:

| Barakah 1 | 1310 MWe | April 2021     | 76,9 % |
|-----------|----------|----------------|--------|
| Barakah 2 | 1310 MWe | April 2022     |        |
| Barakah 3 | 1310 MWe | February 2023  |        |
| Barakah 4 | 1310 MWe | Launch in 2024 |        |







# **Reactor EPR (EDF France)**

Two reactors in operation in China:

|           | Power C  | ommercial Operation | <b>Cumulative Load Factor</b> |
|-----------|----------|---------------------|-------------------------------|
| Taishan 1 | 1660 MWe | December 2018       | 57,0 % (66,3 %)               |
| Taishan 2 | 1660 MWe | September 2019      | 74,4 % (81,1 %)               |

One operational, one close to completion and two under construction in Europe:

| Olkiluoto 3       | 1600 MWe       | May 2023            |
|-------------------|----------------|---------------------|
| Flamanville 3     | 1630 MWe       | Startup 2024        |
| Hinkley Point C 1 | 1630 MWe       |                     |
| Hinkley Point C 2 | 1630 MWe       |                     |
| Sizewell C 1 a 2  | just before st | art of construction |







## The growing share of blocks of Generation III per production

**Other types of reactors of Generation III:** 

VVER12006 + 10 + 6 (in operation + under construction + planned) 75 - 80 %ACPR1000676 - 89 %Hualong One (HPR1000)5 + 11 + 4 + 2 (shut down since the Fukushima accident)

Already 31 units in operation, 33 under construction and many in preparation, are beginning to have a significant share in the production of low-emission electricity and heat. China, Russia and South Korea, which continuously build blocks, have a construction period of les than 10 years – the tendency is to shorten, operating experience positive.



**VVER1200 reactors at the Ostrovec NPP (Belarus)** 

HPR1000 reactors at the Karachi NPP (Pakistan)

Nuclear energy for district heating and industrial heat

Large part of emissions – heating and industry

- Heating (very important for northern territories):
   Electric heating the way of France, the opportunity to use in regulation
   Heat pumps electricity is needed
   Cogeneration at large units construction of a heat pipeline from Temelin, a number of projects in Russia and China (Leningrad 2-1 a 2-2, Hongyanhe 1-4)
  - **Use of Small Modular Reactors cogeneration ad pure heating (ACP100)**
- 2) Heat for industry:

Use of current reactors – lower temperature only (Tianwan 3 a 4) Use of high temperature reactors (large and small modular) – HTR-PM Efficient hydrogen production.



Tianwan 3 a 4 – steam supply for chemical plant ACP100 reactor construction TRISO fuel

# **Generation IV reactors**

Why do we need them?

- 1) Increasing the efficiency of the use of uranium and thorium (fuel stocks for many millennia) fast reactors
- 2) Reduction of the volume and danger of radioactive waste (closing the fuel cycle)exotic types with liquid fuel and continuous separation
- 3) Increasing the efficiency of electricity and heat production for industry (high-temperature reactors for industry and hydrogen production.
- 4) Completely new concepts, sometimes quite exotic six classes of concepts





Sodium cooled reactor BN800

**Sodium Cooled Reactors** – Fast reactor, successful commercial units BN600 and BN800 (Russia), experimental CEFR and now large prototype CFR600 (China), Kalpakkam 500 MWe unit being completed (India)



Lead-cooled Reactor – Fast reactor, cooled by liquid metal, experience on submarines, BREST-300 – prototype reactor (Russia)







Sodium reactor Kalpakkam (India)



**BREST 300** reactor fuel assembly and construction site **Russian submarine with a lead-cooled reactor** 

**Gas-cooled fast reactor** – helium cooling, unmoderated, European ALLEGRO project, considerations for its construction in Central Europe, helium loop in ÚJV a.s.

**Reactors using liquid salts** – use of fluorine salts with lithium, liquid fuel – the most innovative principle, different types of moderation (energy spectrum). Suitable for converting thorium 232 to uranium 233. Farthest in China. Involvement of CVŘ and ÚJV a.s.

**High Temperature Gas Cooled Reactor – Helium** (or other gas) cooled, graphite moderated, high fuel burn-up, passive safety, completed pebble fuel reactor in China – HTR-PM, collaboration with Saudi Arabia

**Reactor cooled by supercritical water** – supercritical units with classical moderation, very high efficiency of heat to electricity conversion. Loop with supercritical water in ÚJV a.s.



#### Scheme of the Allegro reactor project



Installation of the HTR-PM reactor (China)



Pebble fuel for the HTR-PM reactor (China)

# **Small Modular Reactors (SMR)**

- 1) The main problem only a very large source, high initial investment
- 2) Solution Small Modular Reactors (power less than 300 MWe, 500 MWe)
- 3) They allow: a) Build a large power plant graduallyb) Build a small unit, for example, for heating purposes
- 4) Possible variants: a) Based on a classic concepts
  - **b) Small Modular Reactors of generation IV** 
    - c) "Battery" with a long fuel change period
- 5) So far more exoticism for specific purposes (mostly only project preparations)





Akademik Lomonosov floating power plant Architectural vision of the StarCore Nuclear compact "battery"

### **Present classic light water SMR**

KLT-40S (Russia) – PWR, 2 units of 35 MWe, floating power plant Akademik Lomonsov replaces old Bilibin power plant (4 units 11 MWe) Serial floating power plants – reactors RITM-200 50 MWe from icebreaker Serial small power plants – same reactors ACP100 (China) – first "standard" SMR



ACP100 (Linglong One)



Floating power plant Akademik Lomonosov will replace the Bilibin power plant



Proposal for the use of the RITM-200 reactor for a small Yakutia power plant

## **Classic light water types**

Pressurized - VBER-300 (Russia), SMR-160 (USA), Rolls Royce (Great Britain) Integral pressurized – NuScale (USA), ACP100 (China), SMART (South Korea) Boiling – BWRX-300 (Japan)

NuScale – 50 -77 MWe, USA license 2020, Prototype (12 modules) (Idaho) - construction beginning – 2025?, operation – 2030?







#### SMR 160

NuScale (probably closest to implementation)

## **Innovative Small Modular Reactors**

Running HTR-PM – high temperature gas cooled reactor with pebble bed, helium is used and temperature 750°C, graphite moderation, TRISO fuel, two units with single turbine 210 MWe

**Beginning of 2021 – completion of hot tests, start-up phase started** 

**Important experience with the use of helium and TRISO fuel – efficiency and economy** 

Preparation of larger unit consisting of six modules with a common turbine HTR-PM600









**Small Modular Reactor HTR-PM in Shidaowan** 

**TRISO** fuel for HTR-PM units

# **SMR** as battery – long burning time

- Long burning time (10 20 years, even more),
- **ThorCon reactor TMSR Molten Salt Reactors**
- Molten Salt cooling, liquid molten salt fuel
- Two modules (power 500 MWe)
- **Terrestrial Energy company reactor IMSR** (Integral Molten Salt Reaktor) (power 195 MWe
- Bill Gates TerraPower is TWR (Traveling Wave Reactor) type – fast reactor, natrium cooling, HALEU fuel (enrichment 19.75 %) Power: ~ 345 MWe









## **Minireactors and microreactors**

Power output fractions and units of MWe up to 20 MWe

**Dominantly for Island Mode** 

**Project Pele high temperature gas cooled microreactorwith power from 1 up to 3 MWe, HALEU fuel** 

**Reactor eVinci** with power 5 MWe will use heat pipes

**Space reactors – Kilopower – heat pipes** 



#### **Concepcion of reactor Pele**

 Westinghouse

 eVinci™

Vizualization of µMR eVinci<sup>TM</sup> of company Westinghouse



Heat pipes for Kilopower

## **Small Modular Reactor - summary**

- 1) By spreading the investment, you can overcome the problems with the price of money.
- 2) Serial production of modules in the factory.
- 3) It does not replace large units, but complements them.
- 4) Penetration into decentralized energy and heating cogeneration, large range of regulation.
- 5) The need to simplify licensing conditions.
- 6) The question of when serial commercial units will still be open in the market, not before 2030s.





**Reactor NuScale (visualization of the power plant and its scale model)** 

## **Present time – great interest in SMR**

also large well-known companies are preparing their SMR projects Company KHNP: SMR SMART with power 330 MWt (up to 100 MWe) Company Westinghouse: SMR with power 300 MWe based on AP1000 reactor knowledge

**Company Holtec: SMR SMR-160 with power 160 MWe** first prototype at Oyster Creek, Prototype ready at 2030



**Company EDF: SMR NUVARD<sup>TM</sup>.** Compact system with two independent reactor modules each with power 170 MWe. First concrete at France at 2030





ACP-100 (Linglong One) Construction continues apace - completion 2026 July 2023 – central module completed. A comparison of the economics and efficiency of China's large reactors and SMR will be very useful





## **Construction and completion of the first small modular reactors**

- 1) The first SMR are being put into operation, so far in Russia and China. Experiences from their operation will be interesting.
- 2) A number of projects as NuScale, BWRX-300 and more are entering advanced project preparation and prelicensing and licensing stages.
- 3) A number of states are already selecting specific locations for their construction and coordinating licensing procedures (Temelin in the Czech Republic).
- 4) The broad and intensive cooperation of as many future users as possible will be very important.



Small modular reactor ACP100 (Linglon One)



First experience with HTR-PM

#### Huge potential for the construction of SMR in Europe and the Czech Republic

- 1) Pressure to move away from fossil fuels (efforts to reduce emissions and dependence on their imports
- 2) The necessity of using nuclear sources to regulate and ensure network stability (decentralization)
- 3) The necessity of providing heating a suitable model of less centralization and smaller sources closer to the point of consumption
- 4) A more suitable financial model for private local investors
- 5) The number of states that are considering the use of SMR is growing (more selected locations are added)
- 6) Large and small reactors could complement each other appropriately
- 7) The Czechia has selected a location for the first SMR prototype, work is underway on a selection of other suitable locations (appropriate seismological assessment procedures ...)









Aurora

NuScale

**BWRX-300** 

**Rolls Royce** 

## **Czech concepts of Small Modular Reactors**

1) Three classic (usage of VVER fuel assemblies):

**DAVID (Witkowitz)** – two active zones on top of each other, very compact, fuel change in the central plant

**Teplátor - "only" heating source, heavy water reactor (use of also spent fuel assemblies)** 

CR 100 (UJF a.s. CVŘ s.r.o.) - SMR based on VVER fuel

2) Innovative types (generation IV reactors) ÚJV a.s. (CVŘ s.r.o.):

**EnergyWell** – cooling by liquid salt, long term burning ...

**HeFASTo** – fast helium cooled reactor

Involvement in a number of international projects- NuScale, Rolls-Royce, BWRX300 ...

Potential for expert education, development of industrial base and synergies with other nuclear technology areas – first proposed place Temelin



DAVID



**Teplátor** 





EnergyWell

HeFASTo

## **Summary**

- 1) Necessity to solve our dependency on fossil fuel, mainly Russian gas
- 2) Nuclear power has proven the possibility of a very efficient transition to low-emission electricity production (France, Sweden, Ontario, ...).
- 3) Five main challenges of nuclear power industry
- 4) Transition to generation III reactors question of succes still open.
- 5) Great potential in SMR, need to develop a compact model with mass production (classic and innovative types)
- 6) Classic types are closest to implementation, later this innovative
- 7) The Czech Republic is counting on Small Modular Reactors.
- 8) The necessity of developing adequate education, research and industry.
- 9) No solution is ideal there is always a trade-off.





**APR1400** Generation III. reactor

BWRX300 SMR